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Abstract

The Passage of Fast Electrons Through Matter

Adam P. Sorini

Chair of the Supervisory Committee:

Professor John J. Rehr

Physics

This work regards the passage of fast electrons through matter, and in particular how

electrons scatter and lose energy within a solid. The basic quantum theory of these scattering

processes was first considered in the early- to mid-20th century by Bohr, Bethe, Fermi, and

others. This work extends our understanding of how a relativistic electron scatters off, and

loses energy to, a complex many-body system.

The main idea of this work is that it is now possible to calculate, from first-principles, the

inelastic losses of relativistic electrons in condensed matter. We present ab initio calcula-

tions based on a real-space Green’s function approach, implemented in the FEFF8 computer

program[1]. Our work focuses on three topics: Relativistic stopping power and associated

loss parameters, electron energy loss spectroscopy in high energy transmission electron mi-

croscopes, and the inelastic electron scattering mixed dynamic form factor.

We calculate, for the first time, ab initio stopping powers and inelastic mean free paths

in real materials. The stopping powers are calculated over a broad energy range, from ten

eV to above ten MeV. We also present the first ab initio calculations of the “mean excitation

energy”.

We develop a relativistic theory of inelastic electron scattering, based on ab initio cal-

culations of dielectric response, and the generalized Lorenz gauge. Using our relativistic

dielectric theory, we calculate the EELS magic angle ratio for boron nitride and for graphite.

In these anisotropic materials we find large relativistic corrections to the magic angle for





high energy electron microscopes. We also predict and calculate large deviations in the

EELS magic angle from the relativistic vacuum predictions in the low energy-loss regime.

Finally, we present calculations of mixed dynamic form factor.
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Chapter 1

INTRODUCTION

1.1 Historical Introduction

In 1912, Niels Bohr was busy at the Cavendish Laboratory working for Ernest Rutherford.

Perhaps somewhat bored[17] with taking data in Rutherford’s lab, Bohr decided to improve

on some earlier work due to Darwin (the Darwin’s grandson) regarding the theory of how

alpha-particles lose energy while passing through matter.

Bohr felt that Darwin’s theory “wasn’t quite right mathematically”[17] and so he wrote

his own, now classic, paper[18] on stopping power. He obtained a result depending a single

parameter (called k) which he was forced to compute numerically. The numerical calculation

was presumably a painfully tedious one, but Bohr did the calculation by hand, and found

k ≈ 1.123 . (1.1)

In less than the twinkling of an eye the computer program Mathematica tells us more

exactly1

k ≈ 1.122918967 . (1.2)

This historical anecdote illustrates a few interesting points. One point is that the prob-

lem of calculating stopping powers in particular, and electronic losses in general, has a long

and impressive history that involves some of the greatest physicists of the 20th century.

The other point is that sometimes ordinary mortals like us can gain a small advantage over

the old masters like Bohr[18, 19, 20] and Bethe[21] and Fermi[7], because we have more

powerful computers.

1Actually, we can do even better–the exact value is 2/eγ , where γ is the Euler-Mascheroni constant.
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By the way, the title of this thesis is an allusion to the title of a paper[21] by Bethe. In

that paper Bethe presents one of the first calculations of electronic stopping power based

on quantum mechanics.

1.2 Goals

Early theoretical work was at a loss to describe, from first principles, the effect of real

condensed matter systems on the scattering of electrons. The calculations necessary for a

proper description are numerically intense and have only become possible in recent years

with the advent of modern high-powered computers.

The goal of this work is the calculation, from first-principles, of inelastic losses of rela-

tivistic electrons in condensed matter. To that end we have completed work on a number

of different projects, presented in Chapters 3, 4, and 5. All this work relies on a real-space

multiple-scattering Green’s function approach implemented in the FEFF8[1] computer pro-

gram, which is most well-known for theoretical calculations of x-ray absorption. This work

extends that well-established and useful Green’s function technology from calculations for

x-rays to relativistic electrons. A version of the FEFF8 program for calculating relativistic

dipole EELS spectra has recently been developed by Kevin Jorissen[22]. The very use-

ful work done by Jorissen is completely separate from our work on relativistic EELS; we

calculate a screened relativistic EELS magic angle, not dipole spectra.

We present novel relativistic broad-spectrum calculations of the “stopping power” and

“inelastic mean free path” applicable to relativistic and non-relativistic electrons. These

calculations are the first ab initio calculations of this type. In addition we also calculate, from

first-principles, the “mean excitation energy” for five different solids: aluminum, silicon,

copper, silver, and gold. The mean excitation energy is an important “parameter” from

the relativistic theory of stopping. Historically, this “parameter” is interesting because it is

where Bethe hid all of the difficult many-body quantum mechanics. The mean excitation

energy is difficult to calculate from first-principles because it depends on the broad-spectrum

response of the material.

In this work we also develop a relativistic ab initio theory of the EELS magic angle

that includes the effects of dielectric screening. Using this relativistic dielectric theory we
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calculate the EELS magic angle for boron nitride and graphite. The EELS magic angle is

an important parameter used in transmission electron microscopy of anisotropic materials.

Our calculations show large relativistic corrections to the non-relativistic magic angle for

high energy microscopes, in agreement with experiment. We also predict and calculate

large corrections to the magic angle in the low energy-loss regime where dielectric response

is large.

Formally, all of the above calculations may be considered as reductions (energy moments,

for example) of a linear response function called the “mixed dynamic form factor” (MDFF).

The MDFF is a generalization of van Hove’s “dynamic form factor” (DFF). We present ab

initio calculations of the MDFF (which may be reduced to the DFF) within the framework

of real-space multiple-scattering Green’s function theory. Additionally, our work on EELS

may also be of interest in the field of non-resonant inelastic x-ray scattering (NRIXS). The

reason is due to the fact that both of these spectroscopies determine the “dynamic form

factor” (DFF) of the system (see Eqs. 1.7 and 1.9), at least within the Born approximation.

However, in order to correctly interpret and compare spectra from these two different spec-

troscopies an account must taken of the relativistic effects in EELS. Recently, an extension

of the FEFF program was developed for calculating NRIXS spectra via the DFF[23]. We

utilized this program, and the relationship between NRIXS and EELS, in our work on the

MDFF.

1.3 Dissertation Overview

This dissertation is organized as follows: In Chapter 1 the motivation, goals and overview are

presented. Chapter 1 also briefly introduces and describes three interesting spectroscopies;

In Chapter 2 we present an assortment of basic theory to which we will refer back from

subsequent chapters. We feel this chapter is useful because the next two chapters are based

on published journal articles[24, 25] and do not include detailed information about basic

material; In Chapter 3 we present an ab initio approach for calculating the stopping power

and inelastic mean free path associated with electrons traversing a solid. We also present

calculations (for a variety of solids) which span a broad spectral range from low incident

electron kinetic energies (circa the plasma energy) up to and including the case of relativistic
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electron incident kinetic energies; In Chapter 4 we consider relativistic effects in electron

microscopy. We start from a fully relativistic theory and show how to properly include

transverse field effects which are often ignored in condensed matter theory. Interesting

relativistic effects which occur in anisotropic materials are investigated. In particular the

electron energy-loss “magic angle” is calculated, including relativistic corrections, for a

variety of materials; In Chapter 5 we present numerical calculations of the mixed dynamic

form factor for a few materials; In Chapter 6 we give our concluding remarks; In the

Appendix we give details regarding the computer programs we developed in order to perform

the numerical calculations presented in this thesis.

1.4 Overview of Spectroscopies

This thesis is about spectroscopy–in particular electron energy-loss spectroscopy (EELS).

But, formally, the expression for the EELS cross-section is quite similar to the cross-section

for a number of other spectroscopies. This formal similarity is due to an underlying physical

similarity, namely, that the system which gets kicked is the same regardless of what does

the kicking. Here we compare and contrast three different spectroscopies: x-ray absorption

(XAS), EELS, and non-resonant inelastic x-ray scattering (NRIXS).

1.4.1 XAS

The electric field of an x-ray can be used to “kick” an electron in a sample of condensed

matter. The sample electron feels a force (“kick”), and thus a change of momentum, parallel

to the polarization. Formally, this kick is due to a coupling between the electron and the

x-ray (of angular frequency ω) which may2 be taken to have the form

Hint = −E0ε̂ · d̂ (1.3)

where ε̂ is a unit vector specifying the polarization of the x-ray, and d̂ is the dipole operator

d̂ = −e
N
∑

i=1

r̂i ,

2This is hardly obvious, nor correct in all situations. We choose this simple form for the coupling for
illustrative purposes.
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where −e is the charge3 of the electron. The quantity E0 is the magnitude of the x-ray

electric field. The “hat” on the polarization indicates that it is a unit vector. The “hat” on

the dipole operator indicates that it is an operator.

From the interaction of Eq. (1.3) we obtain the cross-section for absorption from the

ground state |Ψ0〉 of the Hamiltonian H0 by application of Fermi’s golden rule[26]

σ(ω) =
4π2ω

c

∑

m

| 〈Ψm| ε̂∗ · d̂ |Ψ0〉 |2δ(E0 + h̄ω −Em) , (1.4)

where h̄ is the reduced Planck constant and c is the speed of light. Eq. (1.4) can be rewritten

as

σ(ω) =
2πω

h̄c

∫

dteiωt 〈Ψ0| d̂ε̂(t)d̂
†
ε̂(0) |Ψ0〉 , (1.5)

where

d̂ε̂(t) = eiĤt/h̄ε̂ · de−iĤt/h̄ .

1.4.2 EELS

Electrons can “kick” other electrons just as well as x-rays. Again this “kick” results in an

amount h̄q of momentum being transfered to the sample. In EELS the kick is due to a

coupling between the electrons which may4 be taken to have the form

Hint =
4πe2

q2V n̂†q , (1.6)

where V is a normalization volume5 for the probe electron and where n̂†
q is the density

fluctuation operator

n̂†q =
N
∑

i=1

eiq·r̂i .

3We use gaussian units where the dimensions of e2 are energy times length.

4This is hardly obvious, nor correct in all situations. We choose this simple form for the coupling for
illustrative purposes.

5The golden rule formula contains a probe-electron phase-space factor which cancels one factor of the
normalization volume. The other normalization volume factor is canceled by the probe-electron incident
flux factor.
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From the interaction of Eq. (1.6) we obtain the cross-section for scattering from the

ground state |Ψ0〉 of the Hamiltonian H0 by application of Fermi’s golden rule[26]

dσ

d(h̄ω)dΩ
=
kf

k0

(

2me2

(h̄q)2

)2
∑

m

∣

∣

∣
〈Ψm|n†q |Ψ0〉

∣

∣

∣

2
δ(E0 + h̄ω −Em) , (1.7)

where h̄ω is the energy lost by the probe electron scattered into solid angle Ω, and where

m is the mass of the electron. Eq. (1.7) can be rewritten as

dσ

d(h̄ω)dΩ
=

kf

2πh̄k0

(

2me2

(h̄q)2

)2 ∫

dteiωt 〈Ψ0| n̂q(t)n̂†q(0) |Ψ0〉 .

For small q = |q| and non-zero energy-loss this can be rewritten as

dσ

d(h̄ω)dΩ
=

q2kf

2πh̄k0

(

2me

(h̄q)2

)2 ∫

dteiωt 〈Ψ0| d̂q̂(t)d̂
†
q̂(0) |Ψ0〉 ,

which, apart from the prefactor, is quite similar to Eq. (1.5).

1.4.3 NRIXS

An x-ray may be scattered as well as absorbed. Just as in the EELS case, the scattering

results in a “kick” to the sample. The kick imparts momentum h̄q and energy h̄ω to the

sample. Here, the energy transfered to the sample h̄ω is equal to the difference h̄(ωi − ωf )

of incoming and outgoing x-ray energies. In non-resonant x-ray scattering, the kick is due

to a coupling which may6 be taken to have the form

Hint =
2πh̄e2

mV√ωiωf
ε̂i · ε̂∗fn†q , (1.8)

where ε̂i and ε̂f are the incoming and outgoing x-ray polarizations, respectively.

From the interaction of Eq. (1.8) we obtain the cross-section for scattering from the

ground state |Ψ0〉 of the Hamiltonian H0 by application of Fermi’s golden rule[26]

dσ

d(h̄ω)dΩ
=
ωf

ωi

(

e2

mc2

)2

|ε̂i · ε̂∗f |2
∑

m

| 〈Ψm| n̂†q |Ψ0〉 |
2
δ(E0 + h̄ω −Em) , (1.9)

where the similarity with Eq. (1.7) is apparent. Eq. (1.9) can also be rewritten as

dσ

d(h̄ω)dΩ
=

ωf

2πh̄ωi

(

e2

mc2

)2

|ε̂i · ε̂∗f |2
∫

dteiωt 〈Ψ0| n̂q(t)n̂†q(0) |Ψ0〉 .

6This is hardly obvious, nor correct in all situations. We choose this simple form for the coupling for
illustrative purposes.
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Thus, NRIXS, just like all the other spectra, can be written in terms of a two-particle

correlation function

〈Ψ0| n̂q(t)n̂†q(0) |Ψ0〉 =

∫

d3xd3x′eiq·(x−x′) 〈Ψ0| ψ̂†(x, t)ψ̂(x, t)ψ̂†(x′, 0)ψ̂(x′, 0) |Ψ0〉 .

For non-interacting particles in orbitals |i〉 having energies λi, where the ground state

is a Slater determinant made up of the lowest N orbitals, this correlation function can be

written as
∑

i≤N

∑

j>N

〈i| eiq·r̂ |f〉 〈f | e−iq·r̂ |i〉 ei(λi−λj)t . (1.10)
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Chapter 2

BASIC THEORY

2.1 Electromagnetism

In this section we review the relevant classical electromagnetism that underlies many of

the ideas presented in this thesis. Our system of electrostatic units is defined and various

response functions are introduced. The concept of a “generalized Lorenz gauge”, which will

be applied to calculations later in this thesis, is also introduced. We also introduce the

classical stopping power.

2.1.1 Dielectric Response

Nearly the entire content of this thesis will revolve around the linear response of condensed

matter systems (briefly, “the system”) to electromagnetic fields. Thus we begin with a

brief review of the dielectric[27] theory of linear response. Within the framework of linear

response, the “electric field”[28] (E) and the “electric displacement” (D) are related by

Di = εijEj , (2.1)

where we have introduced the “dielectric tensor” εij. The spatial and temporal dependence

of the dieletric tensor have been suppresed in Eq. (2.1) pending a discussion of causality.

2.1.2 Maxwell’s Equations

Ignoring the difference between B and H we now write down, for completeness and to set

notation, the basic equations of electrodynamics[28, 29, 30]:

∇ ·B = 0 , (2.2)

∇×E = −1

c

∂B

∂t
, (2.3)

∇×B =
4πjtot
c

+
1

c

∂E

∂t
, (2.4)
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∇ ·E = 4πρtot , (2.5)

where we employ the Gaussian system of units here and throughout this thesis.

Because the system under consideration is electrically neutral on the whole (neglecting

any “external” charge we may inject) we immediately separate the “polarization” charge

and current (ρ and j, respectively) from the “external” charge and current (ρext and jext,

respectivly);

ρtot = ρ+ ρext , (2.6)

jtot = j + jext . (2.7)

We next introduce the “polarization” P by the following definitions[29]:

ρ = −∇ · P , (2.8)

j =
∂P

∂t
. (2.9)

The physical interpretation of the polarization is that it is the dipole moment per unit

volume[29, 27].

From Maxwell’s equations, ∂ρtot

∂t = −∇ · jtot. From Eqs. (2.8) and (2.9), so too does the

continuity equation hold for the polarization density and polarization current. And thus so

too does the continuity equation hold for the “external” charge and “external” current.

Using Eqs. (2.8) and (2.9), We may now rewrite Maxwell’s equations in the form

∇ ·B = 0 , (2.10)

∇×E = −1

c

∂B

∂t
, (2.11)

∇×B =
4πjext

c
+

1

c

∂D

∂t
, (2.12)

∇ ·D = 4πρext , (2.13)

where

D ≡ E + 4πP . (2.14)

Within the context of linear response, we define the polarizability tensor αij as the

proportionality constant between the polarization and the electric field

Pi = αijEj , (2.15)
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so then

εij = δij + 4παij . (2.16)

We define conductivity tensor σij as the proportionality constant between the polariza-

tion current and the electric field

ji = σijEj . (2.17)

It is also possible to relate σij to αij and to εij; each of the three contain all the information

about the sample available within the framework of linear response.

We will also find it useful to define a response function which relates the external poten-

tial (the potential for D) to the system density. This definition is most useful when we can

ignore the transverse part of the electric field and thus consider only electric potentials. In

this case

E = −∇φ , (2.18)

D = −∇φext , (2.19)

φ = ε−1φext (2.20)

and

ρ = χφext , (2.21)

where

ε−1 = 1 + vχ . (2.22)

In the above equations spatial and temporal indices are still suppressed, and v is the

Coulomb potential. For example, in momentum space we have

ε−1
q,q′(ω) = δq,q′ +

4π

q2
χq,q′(ω) . (2.23)

2.1.3 Gauge Fields

It is somewhat amusing that for our field of interest (energy-loss spectroscopy) we can

concentrate entirely on just a single Maxwell equation

∇×B =
4π

c
jext +

1

c

∂D

∂t
, (2.24)
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rather than four different equations. This is so because we obviate the two source-free

Maxwell equations by introducing gauge fields φ and A via

E = −∇φ− 1

c

∂A

∂t
(2.25)

B = ∇×A , (2.26)

and then we note that (for ω 6= 0) the remaining Maxwell equation is just the longitudinal

part of Eq. (2.24).

It is well-known that the gauge fields are not specifed entirely by Eqs. (2.25) and (2.26),

but rather there is a residual “gauge freedom”. We can exploit this gauge freedom in an

interesting way when dealing with condensed matter by using auxiliary information about

the sample. In order to see how best to exploit our gauge freedom let us rewrite Eq. (2.24)

in terms of the gauge fields and also Fourier transform with respect to space and time. We

obtain
(

δijq2 − qiqj
)

Aj =
4π

c
jiext −

iω

c
εij
(

−iqjφ+
iω

c
Aj

)

.

Here we have used the following Fourier transform conventions:

Ai(q, ω) ≡
∫

d3xdte−iq·x+iωtAi(x, t) , (2.27)

and similarly for other functions. The inversion of Eq. (2.27) is given by

Ai(x, t) ≡
∫

d3q

(2π)3
dω

2π
e+iq·x−iωtAi(q, ω) . (2.28)

For the case when the dielectric tensor is diagonal

εij = δijε ,

we have
(

q2 − ω2

c2
ε

)

Ai − qi
(

q ·A − ωε

c
φ
)

=
4π

c
jext ,

which suggests that we choose the gauge where

q ·A =
ωε

c
φ .
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This is known as the “generalized Lorentz [sic] gauge”[29] or the “generalized Lorenz gauge”.

When in vacuum, where ε = 1, the generalized Lorenz gauge reduces to the usual Lorenz

gauge.

In the generalized Lorenz gauge we thus have

A =
4π

c
jext

1

q2 − εω2/c2
,

and

φ =
4π

ε
ρext

1

q2 − εω2/c2
.

2.1.4 Classical Stopping

As a quick example, consider the electric field due to a swiftly moving “delta-electron”.

That is, consider

ρext(r, t) = δ(r − v0t) ,

for constant v0. In this case the scalar potential is

φ = −4πe

ε
2πδ(q · v0 − ω)

1

q2 − εω2/c2
,

and the vector potential is

A = −4πe

c
v02πδ(q · v0 − ω)

1

q2 − εω2/c2
=

v0

c
εφ ,

and thus the electric field is

E(q, ω) = −4πei2πδ(q · v0 − ω)

(

v0
ω
c2 − q

ε

)

q2 − ω2/c2ε
. (2.29)

When a fast electron passes by another charged object we usually think that most of the

momentum transfered to the other object is perpendicular to the path. This is because

the force exerted parallel to the path “on the way in” is nearly canceled “on the way out”.

However, the total force on the delta-electron parallel to the incident direction is not zero.

In fact, the force parallel to the path is just what we would like calculate–the classical

stopping power. The total field E takes into account the response of the sample electrons

via the dielectric constant. These electrons will slow the delta-electron and we can easily
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find the stopping power by simply evaluating the magnitude of the force in the incident

direction at the location of the delta-electron.

S ≡ −δW
δx

= −v0 · F/v0 =
e

v0
v0 ·E(x = v0t, t) , (2.30)

where the apparent time-dependence on the right hand side (RHS) of the equation actually

drops out due to the uniform motion of the delta-electron. Explicitly, we plug into Eq. (2.30)

using Eq. (2.29) and find

S =
e2i

2v2
0π

2

∫

d2q⊥dω
ω

ε(ω)

(

1 − εβ2
)

(

q2⊥ + ω2/v2
0(1 − εβ2)

) ,

where β ≡ v0/c, and where we pause to emphasise and forshadow (see Chapter 4) the

appearance of the factor

h(ω) ≡ (1 − εv2
0/c

2) ≡ (1 − εβ2) ,

which reduces to the usual “relativistic gamma” for ε = 1 and reduces to 1 in the non-

relativistic limit. Continuing now with the evaluation of the classical stopping power we

have to cut off the momentum integral at q2
⊥ ≡ q2c . The integral must be cut off because

it is (logarithmically) divergent. The divergence comes from the fact that we assume the

classical continuum electrodynamic description of the force on the point charge holds for

all wavelengths (all values of q). This is not actually true since large values of momentum

transfer occur for collisions in which the delta-electron passes very close to a single atom.

Thus in these situation the continuum description does not hold. After cutting off the

momentum integral we find

S =
ω2

pe
2

v2
0

(

log
(qcv0

I

)

− i

2πω2
p

∫

dω
ω

ε
h(ω) log(h(ω)/(1 + ω2h/q2

cv
2
0))

)

, (2.31)

where ω2
p is the “plasma frequency”

π

2
ω2

p = −
∫ ∞

0
dωωIm(1/ε) ,

and I is the “mean excitation energy”

− log(I) =

∫∞

0 dωω log(ω)Im(1/ε)

πω2
p/2

,
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and where we used
∫

dω
ω

ε
(1 − h) log(ω2

c/ω
2) = 0 .

The final term in Eq. (2.31) can be simplifed by taking qc → ∞ to find

ω2
pe

2

v2
0

−i
2πω2

p

∫

dω
ω

ε
h log(h) ,

which is zero in the non-relativistic limit.

Eq. (2.31) is about as far as we can go without invoking quantum mechanics to determine

the cutoff qc. One exception is for the case of a heavy (of mass M) non-relativistic incident

particle, for which we set h = 1 and qc = 2Mv0 to find the expected expression

Sheavy,non−relativistic =
ω2

pe
2

v2
0

log(2Mv2
0/I) .

But, even this expression is worthless without knowledge of the “parameter” I which must

be calculated using quantum mechanics. This parameter is calculated in Chapter (3). For

rough estimates one can often get away with I = 10Z electron volts[31, 32], where Z is the

atomic number of the elements making up the sample.

2.2 Causality and Linear Response

Here we give a brief discussion of causality and its practical applications to electron energy-

loss spectroscopy. The discussion is presented from both a dielectric and a quantum me-

chanical point of view. The electronic Hamiltonian is introduced as well as various relevant

“interaction” terms. Fermi’s golden rule is stated and discussed for relevant cases. We also

give a number of properties and definitions pertaining to correlation functions.

2.2.1 Dielectric Response

It may come as a surprise that the dielectric tensor (defined in the previous section) is not a

response function. By this we mean that the dielectric tensor does not, in general, respect

causality[33, 34]; the dielectric tensor gives the response to the total field, which cannot, in

general, be controlled externally. On the other hand, the inverse dielectric tensor is a true

response function;

ε−1
ij (t) = 0 if t < 0 (2.32)
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regardless of the other suppressed arguments. Here, we have written the inverse dielectric

tensor as a function of a single time argument. This is possible due to temporal homogeneity

which we shall see explicitly and formally later on.

Because of Eq. (2.32) we can write the Fourier transform of the inverse dielectric tensor

ε−1
ij (ω) ≡

∫ ∞

−∞

dteiωtε−1
ij (t) =

∫ ∞

0
dteiωtε−1

ij (t) (2.33)

as an integral over only positive times. From the above equation we see that the convergence

of the integral on the right hand side is only improved if ω is analytically continued into

the upper-half complex-plane (UHP). Thus, ε−1(ω) is analytic in the UHP as a result of

causality.

Now it is time to unveil the other arguments of the inverse dielectric function and to

specify when the dielectric function can be regarded as a response function. In general, we

have

Ei(x, t) =

∫

dt′d3x′ε−1
ij (x,x′; t− t′)Dj(x

′, t′) . (2.34)

For simplicity of presentation we specialize to a homogeneous system for which the dielec-

tric function depends only on the difference between position arguments. Then, Fourier

transforming with respect to space and time, we have

Ei(q, ω) = ε−1
ij (q, ω)Dj(q, ω) . (2.35)

The quantities ω and q refer to the frequency and wavevector of the perturbing field,

respectively. Thus, q = 0 means that the perturbing field is of infinite wavelength.

In the q = 0 case, it turns out, the dielectric function may also be considered as

a response function along with the inverse dielectric function. This can be understood

physically[34]; the dielectric function determines response to an external potential whereas

the inverse dielectric function determines response to an external charge. It is only in the

infinite wavelength limit that we can truly control, and let the system respond to, an exter-

nal potential (e.g., a system fixed in between a parallel-plate capacitor). In order to control

an external potential with finite wavelength, slabs of metal (capacitor plates) would have to

be embedded in the system itself which is not allowable. On the other hand we can shoot
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in an external probe charge which has Fourier components at all wavelengths to which the

system will respond.

So, we expect on physical grounds that necessarily at q = 0 the dielectric function has

no poles in the UHP. We show this by proving that the (q = 0) inverse dielectric function

has no zeros in the UHP. To this end one may consider the integral

∫

C

dw

ε−1

dε−1

dω
, (2.36)

where the contour is a large semi-circle in the UHP. This integral is proportional to the

number of zeros minus the number of poles of the inverse dielectric function in the UHP.

Or, since it has no poles, Eq. (2.36) is proportional to the number of zeros of ε−1 in the

UHP. We proceed to show that Eq. (2.36) is equal to zero.

The integral in Eq. (2.36) is equal to an integral in the complex ε−1 plane

∫

C′

dε−1

ε−1
, (2.37)

where the contour C ′ does not encircle the origin.1 An example of the contour C ′ is shown

for the specific case of aluminum nitride in Fig. (2.1). Thus the integral is zero and the

q = 0 inverse dielectric function has no zeros or poles in the UHP and thus similarly the

q = 0 dielectric function has no zeros or poles in the UHP.

2.2.2 Quantum Mechanics

The basic problem in quantum mechanics[35, 36, 37, 38], whether relativistic or non-

relativistic, whether field-theoretical or not, is the solution of the time-dependent Schrödinger

equation

h̄
∂ |Ψ〉
∂t

= −iĤ(t) |Ψ〉 , (2.38)

1This relies on the fact that Im(ε(ω)) > 0 if ω > 0 , which is a result of the fact that the system gets
hotter when irradiated.[29] Actually, it is not obvious how to show this for general systems, but for the
systems considered in this thesis which have real magnetic permeability the arguments given in Ref. [29]
are adequate. See also the sentence following Eq. (2.68). The proof of the causal nature of the dielectric
function for q = 0 also relies on ε(0, 0) being real and positive, which can be thought of as due to the
empirical fact that when a dielectric material is introduced into a parallel plate capacitor with fixed plate
charge the potential difference drops.[27] From an atomic perspective this last point is obvious from the
fact that “opposites attract” and thus the static polarization is parallel rather than anti-parallel to the
electric field.
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Figure 2.1: The contour C ′ of Eq. (2.37) for the specific case of aluminum nitride. Note
that, although the contour is very complicated, it never encircles the pole at the origin,
indicated by the blue ‘X’.
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where h̄ is the reduced Planck constant, and where Ĥ(t) is the total Hamiltonian of the

system under consideration which may be explicitly time-dependent due to external inter-

actions. The appropriate Hamiltonian may usually2 be obtained by taking the classical

Hamiltonian of the corresponding classical system and replacing the dynamical variables

(r and p) of each particle with operators (r and p). In this work we will often denote

operators and their corresponding classical variables with the exact same notation. This is

a lamentable, yet standard, practice. When the difference between operators and numbers

is not obvious from context we will include a “hat”ˆon the operator. Other observables are

obtained in the same way as the Hamiltonian and are thus represented by Hermitian opera-

tors. In general these operators may have explicit time dependence, but in many important

cases the operators of interest are not explicitly time dependent. The expectation value of

such an operator X̂ is then given by

X(t) = 〈Ψ(t)| X̂ |Ψ(t)〉 . (2.39)

An example of an important operator in the study of condensed matter is the N -body[39]

electronic Hamiltonian, which we denote as H s
0

Hs
0 =

N
∑

i=1





1

2

p2
i

me
+ vext(ri) +

1

2

∑

j 6=i

e2

|ri − rj |



+ . . . , (2.40)

where the pi are the electron momentum operators, the ri are the electron position operators,

me is the mass of the electron, e2 is the squared charge of the electron3, and vext(x) is a time-

independent “external” potential which makes the system inhomogeneous. For example, if

we consider the “external” potential to be composed of a monatomic lattice of point nuclei

having charge Ze then we have

v(x) = −
∑

R

Ze2

|x −R| , (2.41)

2Unfortunately, this is not always the case as we can easily see by considering a physical quantity such as
spin, which has no classical counterpart. Apparently, there may exist terms in the quantum Hamiltonian
(such as spin terms) which vanish as h̄ → 0.

3Remember that we use Gaussian units whereas in S. I. units e2 → q2/4πε0, where q is called the “charge”
in S.I. units. The physics, however, is simply that the Coulomb potential is e2/r which tells us all we need
to know.
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where {R} is the set of lattice vectors.

From now on we choose our units such that me = e = h̄ = 1. Except for different

conventions regarding the sign of e (which we define as positive), this choice of units is

known as “(Hartree) atomic units”. The atomic unit of energy is called the “Hartree”

(1H ≈ 27.2eV). The atomic unit of length is called the “Bohr” (1B ≈ 0.529Å). Other units

can be derived, but don’t have special names. For example, the atomic unit of time is

h̄/(27.2eV) ≈ 0.0242fs.

We have included an explicit ellipsis in Eq. (2.40) to indicate that the given terms on

the RHS are by no means complete. However, the terms that we have written are the

most important terms for a study of most condensed matter phenomena. For example,

our approximation of a fixed “external” lattice is equivalent to completely disregarding the

intereaction of phonons and electrons. We certainly could introduce a kinetic term for the

nuclei and thus treat the R as dynamical quantum variables. Very often we do not have to

use the RHS of Eq. (2.40) explicitly. If we ever do need an explicit expression for H s
0 then

we can just use the RHS of Eq. (2.40) without the ellipsis as a first approximation.

One other thing that is missing from Eq. (2.40) is the “transverse” interaction between

the electrons. That is, the electrons are only allowed to interact via a “longitudinal”4

Coulomb force. This missing interaction is most important for the case of relativistic elec-

trons. This oversight will be explicitly remedied in our Chapter on EELS and the Magic

Angle.

If we consider a closed system then the Hamiltonian H of Eq. (2.38) is a function only

of the operators r and p of each particle in the system and is not explictly time-dependent.

Although we may always redefine what we mean by the “system” in order make sure H has

no explicit time-dependence, it is not always convenient to do so.

2.2.3 Interaction Picture

If we are interested in doing perturbation theory, it is convenient to define wave functions and

operators in the so-called “interaction picture”. In this picture we consider our Hamiltonian

4We say “longitudinal” because the field can be written as the gradient of a scalar, thus the Fourier
transform is proportional to the wave-vector.
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to be split into a sum of two parts

H(t) = H0 + V (t) ,

where H0 is called the “unperturbed” Hamiltonian and is often time-independent and V (t)

is called the perturbation which may or may not be explicitly time-dependent. For example,

if we are interested in treating the interaction of a system with an external time-dependent

field then V (t) has the same time-dependence as the field. Or, if we are interested in treating

internal inter-particle interactions in perturbation theory then V is time-independent.

In the interaction picture we define a wave function

∣

∣ΨI(t)
〉

= eiH0t |Ψ(t)〉 ,

which satisfies
∂
∣

∣ΨI(t)
〉

∂t
= −iV I(t)

∣

∣ΨI(t)
〉

, (2.42)

where

V I(t) ≡ eiH0tV (t)e−iH0t ,

may have both explicit and implicit time-dependence. In general, operators in the interac-

tion picture are defined as

XI = eiH0tXe−iH0t .

Since Eq. (2.42) is linear in the time-derivative we may write down the unique solution

at all times if we know the wave-function at a single instant in time (t0). This is done as

follows, we integrate both sides of Eq. (2.42) from t0 to t giving an integral equation

∣

∣ΨI(t)
〉

=
∣

∣ΨI(t0)
〉

− i

∫ t

t0

dt′V I(t′)
∣

∣ΨI(t′)
〉

.

We then substitute the expression on the RHS into the last term on the RHS giving

∣

∣ΨI(t)
〉

=
∣

∣ΨI(t0)
〉

− i

∫ t

t0

dt′V I(t′)

(

∣

∣ΨI(t0)
〉

− i

∫ t′

t0

dt′′V I(t′′)
∣

∣ΨI(t′′)
〉

)

.

Repeating this procedure ad infinitum we obtain

∣

∣ΨI(t)
〉

= T
(

e
−i

R t
t0

dt′V I(t′)
)

∣

∣ΨI(t0)
〉

, (2.43)
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where T is Dyson’s “time-ordering operator” which rearranges operators according to their

time argument with later times on the left.

A very useful special case of Eq. (2.43) is when the interaction picture wave-function is

known to coincide with an eigenstate of the unperturbed Hamiltonian at the initial time

(which we take to be t0 = −∞). In particular, if the interaction picture wavefunction is

known to equal the ground state of the unperturbed Hamiltonian |Ψ0〉 we then have

∣

∣ΨI(t)
〉

= T
(

e−i
R t
−∞

dt′V I (t′)
)

|Ψ0〉 . (2.44)

Typically, we will consider perturbations which are turned on at t = −∞. Interestingly, we

could even treat inter-particle interactions in this way, even though it does not make much

physical sense to “turn off” those interactions[40].

2.2.4 Fermi’s Golden Rule

Fermi’s golden rule[26] (number 2) is a useful first-order result for calculating “transition

rates”. We give a brief and reckless derivation here, with the promise that the end result is

correct. We give a more careful derivation of the cross-section formula for EELS in a later

Section.

For now, we simply expand Eq. (2.44) to lowest order and find

∣

∣ΨI(t)
〉

= |Ψ0〉 − i

∫ t

−∞

dt′V I(t′) |Ψ0〉 . (2.45)

Here we have assumed that the interaction gets turned on in the distant past (i.e., at

t = −∞). To implement this formally we replace the interaction

V (t) → V (t)eδt ,

where δ is a positive infinitesimal.

Then the probability amplitude that the state evolves into an eigenstate |Ψm〉 6= |Ψ0〉 of

the unperturbed Hamiltonian at time t is given to linear order as

A0→m6=0 = −i
∫ t

−∞

dtei(Em−E0)t′+δt′ 〈Ψm| V (t′) |Ψ0〉 , (2.46)
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where the time-dependence of V (t) is due to explicit time-dependence of the interaction (if

there is any). One of the most important cases is when V is not explicitly time dependent.

In this case we have

A0→m = −i 〈Ψm|V |Ψ0〉
et(δ+i(Em−E0))

δ + i(Em −E0)
(2.47)

and so the transition probability is

P0→m = | 〈Ψm| V |Ψ0〉 |2
e2δt

|E0 −Em + iδ|2 .

The transition rate R = dP/dt is thus

2δ| 〈Ψm|V |Ψ0〉 |2
e2δt

|E0 −Em + iδ|2 ,

which equals zero (because of the infinitesimal) unless E0 = Em. In fact, since

lim
δ→0

2δ
1

|x + iδ|2 = 2πδ(x) ,

where the δ(x) on the RHS is Dirac’s delta function, we have

R−→m = 2π| 〈Ψm|V |Ψ0〉 |2δ(E0 −Em) , (2.48)

which is the correct expression for the rate to lowest order in V .

But–hey! Where did the time dependence go in Eq. (2.48)? Well, it went away in the

limit that δ went to zero. But, if there is no time dependence then how come I can’t take

limt→∞ limδ→0
5 in Eq. (2.47) to end up with

A0→m = (−2πi)δ(E0 −Em)| 〈Ψm|V |Ψ0〉 |2 ,

and the patently absurb

P0→m = (2π)δ(E0 −Em)| 〈Ψm| V |Ψ0〉 |2(2π)δ(0) ?

Well, we can do this, as long as we “interpret” (2π)δ(0) as the total time of interaction, thus

returning to us the correct result of Eq. (2.48). However, this “interpretation” of 2πδ(0)

5In that order. I.e., from right to left. cf., also Eq. (2.46) in this section. Also, in the next section cf.
Eqs. (2.81) and (2.82) and the comment following those Eqs.



23

seems rather dishonest, doesn’t it? It is just this type of dishonesty which we wish to avoid

in our derivation of the cross-section for EELS in Section (2.3.1) on scattering.

We also note here that it is simple to take into account external fields with time variation

e−iωt by replacing Eq. (2.48) with

R0→m = 2π| 〈Ψm| V |Ψ0〉 |2δ(E0 + ω −Em) , (2.49)

which can be understood if we imagine that there is some quantity in the initial state with

an energy h̄ω which does not appear in the final state. I.e., energy supplied by the field and

“absorbed” by the system.

2.2.5 Linear Response and Correlation Functions

In this section we derive an expression for the inverse dielectric function in terms of the so-

called “retarded density correlation function”. The correlation function is also often called a

“Green’s function”. We will continue to use the phrase “correlation function” in this section

and reserve the phrase “Green’s function” for a quantity to be defined later. We often use

the symbol χ for correlation functions and the symbol G for Green’s functions. We have no

good reasons for this overuse of symbols other than history and habit.

The density correlation function is a useful quantity because the imaginary part is di-

rectly measurable by a variety of scattering experiments, most notably for us: electron

energy-loss spectroscopy (EELS) and non-resonant inelastic x-ray scattering (NRIXS).

The retarded correlation function for an arbitrary bosonic operator X̂ is defined as[41, 42]

χ
(X)
ret (t− t′) ≡ −iθ(t− t′) 〈0| [X(t), X†(t′)] |0〉 , (2.50)

where the † symbol represents Hermitian conjugation and the time-dependence is governed

by the Hamiltonian of the system

X(t) ≡ eiHs
0 tXe−iHs

0 t , (2.51)

where we take Hs
0 to be given by Eq. (2.40) for definiteness. Of course, the time-dependence

of correlation functions (and Green’s functions) may be defined with respect to any Hamil-

tonian we like. However, the dependence of the correlation function on the time-difference

t− t′ as in Eq. (2.50) will only occur if the Hamiltonian is not explictly time dependent.
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In Eq. (2.50), the state |0〉 is taken as the ground state of the system (the lowest energy

eigenstate of Hs
0). This expectation value is appropriate when working with a system at

zero temperature, or at temperatures much lower than the typical excitation energy scale.

For the most part, since we are concerned with electronic excitations whose typical scale is

on the order of electron-volts and temperatures whose typical scale is on the order of room

temperature, we can get away with considering the zero temperature correlation function.

The definition of the retarded correlation function for an arbitrary fermionic operator is

the same as Eq. (2.50), but with the commutator replaced by an anticommutator. We are

also often interested in the “time-ordered” correlation function

χ(X)(t− t′) ≡ −i 〈0| T (X(t)X†(t′)) |0〉 , (2.52)

where T is the “time-ordering” symbol.

The specific retarded correlation function which we will be able to relate to the inverse

dielectric function is the retarded correlation function for the density operator

χ(r, r′, t− t′) ≡ −iθ(t− t′) 〈0| [n̂(r, t), n̂(r′, t′)] |0〉 , (2.53)

where

n̂(r) =

N
∑

i=1

δ(r − r̂i) . (2.54)

We will see later that scattering experiments are typically able to measure a certain

retarded correlation function that is easily related to Eq. (2.53). This useful correlation

function is given by

χ(q, t− t′) ≡ −iθ(t− t′) 〈0| [n̂q(t), n̂†q(t′)] |0〉 , (2.55)

where
1

V n̂
†
q ≡ 1

V

∫

d3reiq·rn̂(r) =
1

V

N
∑

i=1

eiq·̂ri (2.56)

is the density fluctuation operator (i.e., for non-zero q this operator gives fluctuation about

the q = 0 density N/V). The correlation function χ(q, t) is the diagonal element of

χ(q,q′; t) ≡
∫

d3rd3r′e−iq·reiq
′·r′χ(r, r′ t) . (2.57)
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There is a relationship, which we will presently introduce, between the imaginary part

of the inverse dielectric function and the retarded density correlation function. This re-

lationship is often called the “fluctuation-dissipation theorem” (for electronic excitations)

because it relates “fluctuations” in the electron density (nq) to the “dissipative” part of a

dielectric response function (Im[ε−1]).6

Also, in this section we will ignore the effects of transverse electromagnetic fields which

is a very good approximation for the large part of condensed matter theory. We will return

to include the transverse fields later when we discuss high-energy EELS in Chapter (4).

Ignoring transverse fields means that we can write the total Hamiltonian of the system

(characterized by Hamiltonian Hs
0) and the external electric potential φext(r, t) as

H = Hs
0 + V (t) , (2.58)

with

V (t) = (−e)
N
∑

i=1

φext(ri, t) = (−1)

∫

d3rn̂(r)φext(r, t) . (2.59)

Here we are interested in perturbation theory in the external time-dependent potential

V and so the “interaction picture” is defined with respect to H s
0 . In the interaction picture

we have

V I(t) ≡ eiH
s
0 tV (t)e−iHs

0 t = (−1)

∫

d3rn̂I(r, t)φext(r, t) . (2.60)

We again use the expansion of Eq. (2.44) to linear order

∣

∣ΨI(t)
〉

= |0〉 − i

∫ t

−∞

dt′V I(t′) |0〉 , (2.61)

where |0〉 is the ground state of Hs
0 .

The density of the system (denoted by the same symbol as the density operator, but

6The term “dissipative” can be justified by considering the explicit energy absorbed via Eq. (2.59) and
< ∂V/∂t >, or by Fermi’s golden rule for the absorption[43].
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with no “hat”) is then given to linear order in V by

n(r, t) =
〈

ΨI(t)
∣

∣ n̂I(r, t)
∣

∣ΨI(t)
〉

= 〈0| n̂(r) |0〉 + i

∫ t

−∞

dt′ 〈0| [V I(t′), n̂I(r, t)] |0〉

= n0(r) + i

∫ t

−∞

dt′
∫

d3r′ 〈0| [n̂I(r, t), n̂I(r′, t′)] |0〉φext(r
′, t′)

= n0(r) + i

∫ ∞

−∞

dt′
∫

d3r′θ(t− t′) 〈0| [n̂I(r, t), n̂I(r′, t′)] |0〉φext(r
′, t′)

= n0(r) −
∫

dt′d3x′χ(x,x′, t− t′)φext(x
′, t′) , (2.62)

where the last equality follows from the definition of the retarded correlation function in

Eq. (2.53).

Thus

ρ(q, ω) ≡ (−e)n(q, ω) = (−1)2
∫

d3q′χ(q,q′, ω)φext(q
′, ω) , (2.63)

which gives a linear relation between the external electric potential and the induced density.

For finite ω, the zeroth order term is zero since the equilibrium density does not change

with time. For a homogeneous system Eq. (2.63) reduces to

ρ(q, ω) = χ(q, ω)φext(q, ω) . (2.64)

The function χ(q,q′;ω) is the Fourier transform with respect to time of χ(q,q′; t). Thus,

using Eqs. (2.57) and (2.53)we have

χ(q,q′, ω) = −i
∫ ∞

−∞

dteiωtθ(t) 〈0|
[

nq(t), n†
q′

]

|0〉

= −i
∫ ∞

0
dt
∑

m

e−δteiωt
(

〈0|nq |m〉 ei(E0−Em)t 〈m|n†
q′ |0〉

− 〈0|n†
q′ |m〉 〈m|nq |0〉 ei(Em−E0)t

)

= i
∑

m

(

〈0|nq |m〉 〈m|n†
q′ |0〉

−δ + iω + i(E0 −Em)
−

〈0|n†
q′ |m〉 〈m|nq |0〉

−δ + iω + i(Em −E0)

)

. (2.65)

Taking the diagonal element of the above equation we have

χ(q, ω) =
∑

m

∣

∣

∣
〈m|n†q |0〉

∣

∣

∣

2
(

1

E0 + ω −Em + iδ
− 1

Em + ω −E0 + iδ

)

. (2.66)
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And, finally, taking the imaginary part of the above equation, and taking E0 as the ground

state energy, we have

Im [χ(q, ω)] = −π
∑

m

∣

∣

∣〈m|n†q |0〉
∣

∣

∣

2
δ(E0 + ω −Em) , (2.67)

which is never positive.

Using Eq. (2.22) to relate χ and ε−1 we see that

−Im
[

ε−1(q, ω)
]

= −4π

q2
Im [χ(q, ω)] , (2.68)

which is never negative. Also, we can see from Eq. (2.68) that the imaginary part of the

dielectric function is never negative. The quantity −Imε−1(q, ω) is often called the “energy

loss function” (ELF) or even the “EELS spectrum”. It is so called because, within the

first born approximation (FBA), the EELS cross-section is given by Eq. (1.7). And, on

comparison of with Eqs. (2.67) and (2.68), Eq. (1.7) is is seen to be the same as

dσ

dΩdω
=
kf

ki

1

π2q2
Im(

−1

ε(q, ω)
) . (2.69)

Thus, within the FBA, EELS can directly measure the dielectric function. This is described

in more detail in the next section. For future reference, we note here that in the case of

high energy EELS k2
i >> ω. Thus in

qdq

k2
i

= d cos(θ)

(

1 − ω

v0ki
+ . . .

)

, (2.70)

the O(ω/v0ki) term can be ignored. In this case, and for an azimuthally symmetric differ-

ential cross-section, Eq. (2.69) can be rewritten as

dσ

dqdω
=

2

πqk2
i

Im(
−1

ε(q, ω)
) . (2.71)

2.3 High Energy Electron Scattering

In this Section we present a well-founded derivation of the double differential EELS scat-

tering cross-section. Along with this we also introduce the necessary “Green’s functions”,

“T -matrices” and “form-factors”.
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2.3.1 Scattering and Cross-Sections

The general theory of scattering is given in a number of good textbooks[44, 45, 46, 47].

Thus, we can restrain ourselves here to just a brief treatment for the specific case of EELS.

Our goal in this section is to derive a well-known formula from first principles and without

recourse to intellectually dishonest tricks such as squared delta-functions, etc. We beg the

forgivness of experts for the inclusion of our take on this well-known material. In our

defense, the specific case of EELS is particularly cute and streamlined mostly due to the

fact that only one simple wavepacket (for the probe) must be introduced.

Also, this subsection serves the purpose of naturally introducing a number of important

quantities such as: the “Green’s function”, the “T -matrix”, and the “Dynamic Form Factor”

(DFF).

In the case of EELS we are interested in a system composed of a “probe” and a “sample”

(the “sample” being the same as the “system” of previous sections). We consider the sample

to be at rest at the origin. The sample eigenfunctions are already localized in space thanks to

the “external” potential. The sample eigenfunctions are normalizable and describe physical

states; we do not need wave packets for the sample. On the other hand, the probe is a free

particle whose description requires wavepackets. In this section we consider the probe to be

non-relativitistic. This limitation is removed in subsequent chapters.

The total Hamiltonian for EELS is just that of the sample, the probe, and their inter-

action

H = Hs
0 +

p2

2
+ vext(r) +

N
∑

i=1

1

|r − ri|
, (2.72)

where Hs
0 is from Eq. (2.40), p is the momentum of the probe, and r is the position of the

probe. Because we are interested in initial- and final-states in which the probe is greatly

separated from the sample we write

H = H0 + V , (2.73)

where

H0 = Hs
0 + p2/2 ,



29

and

V = vext(r) +
N
∑

i=1

1

|r− ri|
. (2.74)

Thus, eigenfunctions of H0 are direct products of plane-waves |k〉 and sample eigenfunctions

|m〉
H0 |k〉 |m〉 = (

k2

2
+Em) |k〉 |m〉 ,

where Em is the energy of the sample.

To treat the incident probe correctly we form a wave packet to localize the probe electron

in space. That is, we write the (t = 0) free wave-function of the system as

Wki,m(r, r1, . . . , rN) ≡ eiki·rw(r)φm(r1, . . . , rN) , (2.75)

where w(r) is some small “blob” localized about the origin in position space. The state

we have written in Eq. (2.75) is similar to the standard (dishonest) incident state eiki·rφm

except that we have included the blob to localize the probe. Thus, we expect that the

quantity ki will be interpreted as the initial momentum of the probe.

The state in Eq. (2.75) may also be written as

|Wki,m〉 =

∫

d3k

(2π)3
w(k) |ki + k〉 |m〉 , (2.76)

where w(k) is the Fourier transform of w(r) which has been chosen such that particle is

localized in momentum space. In Eq. (2.75) we use the convention 〈x|k〉 = eix·k which

is perfectly appropriate, but often not convenient. If we instead choose the normalization

〈x|k〉 = eix·k/
√
V then the only thing that changes is that Eq. (2.76) must be multiplied by

√
V .

It is possible to adequately (within the requirements of a given experiment) satisfy both

the requirements of localization in position and momentum as long as we do not require

extreme localization in both simultaneously.

Also, although our resourceful experimentalist friends can probably figure out how to

localize the probe and shoot it at the sample, they probably can not figure out how to

prepare an arbitrary eigenstate of the sample. Thus, in practice, m = 0 in Eq. (2.76) for

the incident packet.



30

If we evolve the free wave-packet with the free Hamiltonian we find

Wki,0(r, r1, . . . , rN; t) ≈ eiki·r−itk2/2w(r − vit)e
−iE0tφ0(r1, . . . , rN) ,

where vi = ki/m = ki which justifies the expected interpretation of ki. Further, we know

that in this scattering experiment the system is well separated and well described by the

free packet for any time in the distant past. In our scattering experiment (where the true

Hamiltonian is H) the actual state of the system at an aribtrary time t is thus given by

|Ψ(t)〉 = e−iH(t−(−τ))e−iH0(−τ) |Wki,0〉 = e−iHt
(

e−iHτeiH0τ
)

|Wki,0〉 , (2.77)

where τ is a time which is large enough that the free probe wave-packet has a negligible

overlap in space with the ground state wavefunction of the system.

The quantity in the parenthesis in Eq. (2.78) can be rewritten as

e−iHτeiH0τ = 1 − i

∫ 0

−τ
dt′eiHt′V e−iH0t′ ,

where V is the interaction potential defined via Eq. (2.74).

Thus we have

|Ψ(t)〉 = e−iHt

(

1 − i

∫ 0

−τ
dt′eiHt′V e−iH0t′

)

|Wki,0〉

= e−iHt

(

1 − lim
δ→0

i

∫ 0

−τ
dt′eδt

′

eiHt′V e−iH0t′
)

|Wki,0〉

= e−iHt

(

1 − lim
δ→0

i

∫ 0

−∞

dt′eδt
′

eiHt′V e−iH0t′
)

|Wki,0〉 . (2.78)

The second equality above follows from the fact that we may interchange the limit and the

integration. The third equality follows from the fact that V gives zero when it acts on the

well separated free wave-packet. I.e., for large τ the probe wave-packet is localized about

r ≈ −viτ which is very far from the (localized) sample. Thus V , which is a function only

of the probe/sample separation, acting on the wave-packet vanishes. In fact, this was the

reason we chose the particular separation of H into H0 + V that we did.

If we substitute the expansion Eq. (2.76) of the wave-packet in terms of free eigenfunc-
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tions into Eq. (2.78) we find

|Ψ(t)〉 = e−iHt

∫

d3k

(2π)3w(k)

(

1 − lim
δ→0

i

∫ 0

−∞

dt′eδt
′

eiHt′V e−iEI(k)t′
)

|ki + k〉 |0〉

= e−iHt

∫

d3k

(2π)3w(k)
(

1 +G(EI(k))+V
)

|ki + k〉 |0〉 , (2.79)

where EI(k) ≡ E0 + (ki + k)2/2 and where (sound the trumpets) we have introduced the

“retarded Green’s function”

G(E)+ ≡ lim
δ→0

1

E −H + iδ
,

where the limit is taken from above. This quantity turns out to be a very useful tool in

the study of a great many branches of physics. We will discuss the Green’s function in

more detail in the next section. But for now we are content to simply state (and use) the

well-known property7

G(E)+V = G(E)+0 T (E) ,

where G0(E)+ is the retarded free Green’s function

G0(E)+ = lim
δ→0

1

E −H0 + iδ
,

and T (E) is the aptly named “T -matrix”

T (E) = V + V G(E)+V . (2.80)

As the time t grows large we may ask for the probability amplitude to be in the state

e−iH0t |kf 〉 |n〉. Here, we assume that |kf 〉 |n〉 6= |k0〉 |0〉.8 This amplitude is independent of

t for large t (as expected) for the same reason that the RHS of Eq. (2.78) was independent

7which is proved by applying algebra to the definitions of G(E), G0(E) and T (E)

8But not necessarily |n〉 6= |0〉. I.e., we can still treat elastic scattering, just not in the forward direction.
Although, our focus here will turn out to be inelastic scattering.
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of τ for large τ . The scattering amplitude is thus

A = lim
t→∞

〈n| 〈kf | eiH0t |Ψ(t)〉

= lim
t→∞

〈n| 〈kf | eiH0te−iHt

∫

d3k

(2π)3
w(k)

(

1 +G+
0 T
)

|ki + k〉 |0〉

= lim
t→∞

〈n| 〈kf | eiEF t

∫

d3k

(2π)3
w(k)e−iEI (k)t

(

1 +G+
0 T
)

|ki + k〉 |0〉

= lim
t→∞

∫

d3k

(2π)3w(k)e−i(EI (k)−EF )t lim
δ→0

1

EI(k) −EF + iδ
〈n| 〈kf |T |ki + k〉 |0〉

=

∫

d3k

(2π)3
w(k)(−2πi)δ(EF −EI(k)) 〈n| 〈kf |T |ki + k〉 |0〉 , (2.81)

where EF ≡ En + k2
f/2, and where we have used the fact that (1 +G+

0 T ) |ki + k〉 |0〉 is an

eigenfunction of the full Hamiltonian with eigenvalue EI(k). We have also used

lim
t→∞

lim
δ→0

e−ixt 1

x+ iδ
= (−2πi)δ(x) . (2.82)

The amplitude contains a Dirac delta function. But, because of the wave-packet, we don’t

have the square of a delta-function when we square the amplitude to find the probability.

The delta functions will have different arguments due to the spread of the incident probe-

momentum. We will find, upon squaring the amplitude, a term like

δ(EF −EI(k))δ(EF −EI(k
′)) ≈ δ(EF −EI(0))δ(EI (k) −EI(k))

≈ δ(EF −EI(0))δ(vi · (k − k)) , (2.83)

which is resonable since EF − EI(0) is just (En + k2
f/2) − (E0 + k2

i /2) and we expect

conservation of energy. In the rest of this section we denote EI(0) by EI .
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The scattering probability is thus

P = |A|2

=

∫

d3k

(2π)3
w(k)(−2πi)δ(EF −EI(k)) 〈kf | 〈n|T |ki + k〉 |0〉

×
∫

d3k′

(2π)3w
∗(k′)(2πi)δ(EF −EI(k

′))
(

〈kf | 〈n|T
∣

∣ki + k′
〉

|0〉
)∗

≈ (2π)δ(EF −EI)| 〈kf | 〈n|T |0〉 |ki〉 |2
∫

d3k

(2π)3

d3k′

(2π)3
w(k)w∗(k′)(2π)δ(vi · (k − k′))

= (2π)δ(EF −EI)| 〈kf | 〈n|T |0〉 |ki〉 |2
∫ ∞

−∞

dt

∣

∣

∣

∣

∫

d3k

(2π)3
w(k)eitvi ·k

∣

∣

∣

∣

2

= (2π)δ(EF −EI)| 〈kf | 〈n|T |0〉 |ki〉 |2
1

v0

[∫ ∞

−∞

dz|w(0, 0, z)|2
]

, (2.84)

where the incident beam direction is taken as the z-axis. The term in braces in Eq. (2.84)

is just the number of probe electrons9 per unit area. Thus the quantity

P
∫∞

−∞
dz|w(0, 0, z)|2

≡ P

n1
probe

, (2.85)

is independent of the particular details of the probe wave-packet. Eq. (2.85) has units of

area, and is called the “cross-section” for scattering. The last equality just defines the

quantity n1
probe =

∫

dz|w(0, 0, z)|2 .

Over the course of an actual experiment a large number of probe particles are fired

at the sample (which may or may not itself consist of a large number of approximately

independent “molecular” particles). But each probe particle is taken to be independent of

the other probe particles. And each “molecular” particle is by definition independent of the

other molecular particles. Thus, also in this case the cross-section is given by Eq. (2.85).

I.e.,

σ ≡ P

n1
probe

=
1

v0
(2π)δ(E0 + ω −En)| 〈kf | 〈n|T |0〉 |ki〉 |2 , (2.86)

where we have also defined the “energy-loss”

ω ≡ k2
i /2 − k2

f/2 .

Eq. (2.86) is a sensible10 formula in light of the following remarks: Imagine that a large

9There is only one probe electron, but the phrase “number of probe electron” sounds silly. Really we
should say, “number of probe electrons per unit area per probe electron.”

10I.e., can be made sense of in vivid classical terms.
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Figure 2.2: An artist’s depiction of scattering six incident particles (out of 20 total) by an
unknown area σ along with the depiction of various other quantities of interest (see text).

numberNprobe of probe particles are shot at the sample. In this case one can think about how

the distribution of probe particles “looks” as viewed down the incident axis. The distribution

one “sees” is just Nprobe

∫

dz|w|2 ≡ Nproben
1
probe. Probe particles are scattered because the

sample takes up some area perpendicular to the incident axis. This “sample area” is of course

unknown and is just what we call the cross-section σ. Thus, see Fig. (2.2), the number of

scattered particles is Nscattered = Nproben
1
probeσ. If we prefer to describe the entire sample as

a collection of NA independent scatters then it makes sense to define the cross-section per

scatter (σANA ≡ σ) rather than for the whole sample. I.e., Nscattered = Nproben
1
probeσANA.

The cross-section is then

σA =
Nscattered

NprobeNAn
1
probe

,

which is the same as Eq. (2.86) since Nscattered = NprobePNA. Also we note here that the

division of the sample into independently scattering “atoms” or “molecules” is not necessary,

but is often convenient.

From the above description of the scattering process we might think that we can only

gain information about the overall “size” of the sample. But, still speaking classically, we
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Figure 2.3: Comparison of the total cross-section to the backscattering cross-section for a
classical hard-sphere versus a square. The total cross-sections are (apparently) nearly equal,
but the relative size of the backscattering cross-section tells us that the two shapes differ.

can also learn about the “shape” of the sample by considering not just the total cross-

section, but the cross-section as a function of angle. As a blunt example, we could compare

the total cross-section to the back-scattering cross-section for the case of a sphere and a

square. This is done in Fig. (2.3). Thus, we can learn not only about the “size” via the total

cross-section, but also about the “shape” via the differential cross-section as a function of

angle.

Finally, for the case of scattering into within d3kf of kf , and into any final state of the

sample, we can write down the very useful formula for the EELS cross-section:

dσ = V d3kf

(2π)3

∑

n

V
v0

(2π)δ(E0 + ω −En)| 〈kf | 〈n|T |0〉 |ki〉 |2 , (2.87)

where we have introduced a normalization volume V for the plane-waves such that

〈x|k〉 =
1√
V
eik·x .

In Eq. (2.87), the first factor of V comes from counting plane-wave states in a box, and the

second factor of V comes from the fact that we have changed our normalization conventions

for 〈x|k〉 relative to Eq. (2.75). Of course, the normalization drops out at the end of any

calculation because there is a factor of 1/V in the T -matrix element now.
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We are also now in a position to state the main point of this section: the only thing that

is really difficult to calculate in the theory of scattering is the quantity

〈kf | 〈n|T |0〉 |ki〉 , (2.88)

everything else in this section really just deals with the quantum kinematics. The kinematics

will go through in almost exactly the same way for any type of scattering and so we will

usually just be interested in matrix elements such as Eq. (2.88). However, the connection

to experiment is through Eq. (2.87).

In order to obtain a simple and useful formula for the EELS cross-section we make

the “First Born Approximation” (FBA) which consists of replacing T by it’s first term in

Eq. (2.80). I.e., T → V . In this case Eq. (2.87) becomes

dσ(FBA) = V d3kf

(2π)3

∑

n

V
v0

(2π)δ(E0 + ω −En)

∣

∣

∣

∣

∣

〈kf | 〈n|
(

vext(r) +
N
∑

i=1

1

|r − ri|

)

|0〉 |ki〉
∣

∣

∣

∣

∣

2

=
d3kf

(2π)3

∑

n

1

v0
(2π)δ(E0 + ω −En)

∣

∣

∣

∣

∣

〈n|
∫

d3xei(ki−kf )·x
N
∑

i=1

1

|x − ri|
|0〉
∣

∣

∣

∣

∣

2

=
d3kf

(2π)3

∑

n

1

v0
(2π)δ(Eo + ω −En)

(

4π

q2

)2
∣

∣

∣

∣

∣

〈n|
N
∑

i=1

eiq·ri |0〉
∣

∣

∣

∣

∣

2

, (2.89)

where the second equality holds only for inelastic scattering11. The third equality introduces

the definition

q ≡ ki − kf . (2.90)

Using the definition of ω, we can write

d3kf = dΩdkfk
2
f = dΩdωk2

f/vf ,

and thus

(

dσ

dΩdω

)(FBA)

=
k2

f

vfv0

4

q4

∑

n

∣

∣

∣

∣

∣

〈n|
N
∑

i=1

eiq·ri |0〉
∣

∣

∣

∣

∣

2

δ(E0 + ω −En)

=
k2

f

vfv0

4

q4
S(q, ω)

=
kf

k0

4

q4
S(q, ω) , (2.91)

11By “inelastic” we mean that the state of the sample changes. I.e., n 6= 0
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where the final (seemingly trivial) equality is displayed as a reminder of the fact that this

is a non-relativistic result; the standard relativistic extension of this calulation is achieved

by replacing m → mγ in Eq. (2.91). Unfortunately (and amusingly), this procedure can

be difficult when using atomic units (where m = 1) unless we remember that the DDCS is

proportional to m2, as evidenced by the penultimate expression in Eq. (2.91).

The EELS cross-section within the FBA is a very important tool, especially when it

comes to calculating the stopping power (CSP) and inelastic mean free path (IMFP) of

electrons in condensed matter. Even though the FBA fails in many circumstances, the

calculation of the stopping power is especially resiliant against failure because it involves

the integrated cross-section. The unusually large range of validity of the FBA for calculating

the CSP can also be seen a posteriori from the explicit numerical calculations of Chapter

(3).

2.3.2 Green’s functions, Correlation, and all that

In the preceding sections we have introduced the definition of the retarded Green’s function

G(E)+ ≡ 1

E −H + iδ
, (2.92)

as well as the definition of the retarded correlation function

χ(x,x′; t) = −iθ(t) 〈0|
[

X(t), X†(0)
]

|0〉 . (2.93)

Really, the correlation function should also bear indices indicating the operator X whose

correlations are being measured. Also, the correlation function depends on what state |0〉
we choose to use for the expectation value.

The Green’s function of Eq. (2.92) and the correlation function of Eq. (2.93) turn out to

be the same when the operator X(t) in Eq. (2.93) is replaced by the particle annihilation

operator[48, 49, 41, 50] ψ(x). For example, for the case when |0〉 is the particle vacuum, we

have

χ(x,x′; t) = −iθ(t) 〈0|ψ(x, t)ψ†(x′) |0〉 = −iθ(t) 〈x| e−iHt
∣

∣x′
〉

.

Whereas the Green’s function (Fourier transformed) is

〈x|
∫

dE

2π
e−iEtG(E)

∣

∣x′
〉

=

∫

dE

2π
e−iEt 〈x| 1

E −H + iδ

∣

∣x′
〉

= θ(t)(−2πi)
1

2π
〈x| e−iHi

∣

∣x′
〉

,
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which is the same thing as the correlation function. Thus, it makes no difference whether

we say “Green’s function” or “correlation function”.

We now proceed to examine a few properties of the Green’s function and introduce some

terminology which we will use later.

The Green’s function for t < 0 is given by Eq. (2.52) as

G(x,x′ t) = i 〈0|ψ†(x′)ψ(x, t) |0〉 , (2.94)

where we will most often be interested in the case when |0〉 is the N-body ground state. I.e.,

the lowest energy eigenfunction of Eq. (2.40). We next insert into Eq. (2.94) a complete set

of states of the N − 1 particle Hamiltonian12 to find

G(x,x′ t) = i 〈0|ψ†(x′) |N − 1;m〉 〈N − 1;m|ψ(x, t) |0〉

= i 〈0|ψ†(x′) |N − 1;m〉 〈N − 1;m|ψ(x) |0〉 ei(EN−1;m−EN;0)t

≡ i
∑

m

gm(x)g∗m(x)ei(εm−µ)t , (2.95)

where we have defined the zero temperature chemical potential

µ ≡ EN ;0 −EN−1;0 ,

and the quasiparticle energy

εm = EN−1,m −EN−1;0 ,

both of which are positive. We have also defined the quasiparticle (hole) wavefunction[51, 42]

gm(x) = 〈N − 1;m|ψ(x) |0〉 ,

which reduces to a single particle wavefunction in a non-interacting theory.[51]

Thus, because the density is given (in second quantized notation) by

n0(x) = 〈0|ψ†(x)ψ(x) |0〉 = −i lim
t→0−

G(x,x; t) ,

we have

n0(x) =
∑

m

|gm(x)|2 ,

12which is also given by Eq. (2.40) but where the sums over particles run from 0 to N − 1 rather than N
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which is an interesting equation to contrast with the Kohn-Sham density functional theory

(DFT) expression for the density given later.

Indeed, we will see that DFT can serve as a useful starting point to attack the quantum

many body excited-state problem.

2.4 Independent Particles and Density Functional Theory

2.4.1 Independent Particles

Other than the fact that we must start from somewhere, there is but little apology we can

give for the independent particle treatment of a many-body system.

Here is what Hans Bethe said when asked, during an interview[52] conducted by David

Mermin, why he felt that he and Sommerfeld and Peierls could ignore electron-electron

interactions and treat the electrons as independent

“I understand that the Russians found that very difficult. But to me it seemed

quite obvious, because after all, it happened in the atom... so, we obviously

would have a Hartree-Fock theory of electrons in a crystal... It didn’t worry

Peierls and me.”

–H. A. Bethe

Of course, it is usually necessary to go beyond the independent particle treatment. But,

the point is that we may as well start from there.

The “independent particle” theory means that we can treat the many-body wavefunction

as a Slater determinant of single-particle orbitals. Thus a N-body wavefunction is specified

by giving N single-particle wavefunctions. In other words, our single N-body problem is

effectively reduced to N single-body problems.

For example, the N-body ground state is specified in the independent particle picture

by specifying N “occupied” orbitals. These “occupied” orbitals are the N eigenfunctions

of some (rather arbitrary, in general) single-particle Hamiltonian which have the N lowest

eigenvalues. Then, excited states are created from the ground state by swapping out the
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occupied orbitals for other orbitals with higher eigenvalues of the single-particle Hamilto-

nian.

For example, consider Eq. (1.4) which gives the cross-section for x-ray absorption:

σ(ω) =
4π2ω

c

∑

m

| 〈Ψm| ε̂∗ · d̂ |Ψ0〉 |2δ(E0 + h̄ω −Em) .

In the independent particle approximation, the sum over the N different position operators

within d can be replaced by a single position operator which acts on orbitals. This is because

the dipole operator is a sum of single-body terms and it is sandwiched between two Slater

determinants.[31] The non-zero matrix elements then are between Slater determinants which

differ by exactly one orbital. Thus, the sum over final states reduces to a sum over “inital” or

“occupied” orbitals and “final” or “unoccupied” orbitals. Finally, the differences in energies

of the Slater determinants is just the difference in orbital energies. Thus Eq. (1.4) reduces,

in the independent particle approximation as:

σ(ω) → 4π2ωe2

c

∑

i,occ

∑

j,unocc

| 〈j| ε̂∗ · r̂ |i〉 |2δ(λi + h̄ω − λj) ,

and cf., Eq. (1.10).

2.4.2 Density Functional Theory

Here we briefly discuss Kohn-Sham[53] (KS) density functional theory.[54, 55, 56, 57]

Density functional theory is based on the fact that the ground state density deter-

mines “everything”.[56] That this is so can be seen from the first Hohenberg-Kohn (HK)

theorem[54] which states that the Hamiltonian (up to an additive constant) is a unique

functional of the ground-state density. But since the Hamiltonian knows about everything

(i.e., all the states), then everything is a (albeit complicated) functional of the ground state

density.

Even though the proof of the HK theorems was never “hard”, the constrained search

ideas of Levy[56, 58] make for a wonderful proof which seems trivial. These ideas also lead

to an interesting definition of the ground-state as that antisymmetric wavefunction which

yields the ground state density and minimizes the operator

T̂ + V̂ee , (2.96)
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where T̂ is the kinetic energy operator

T̂ ≡
N
∑

i=1

p̂2
i

2
, (2.97)

and V̂ee is the electron-electron interaction operator

V̂ee ≡
1

2

N
∑

i6=j=1

1

|̂ri − r̂j|
. (2.98)

That is, consider the following process: someone hands us a density (a non-negative

function of a single variable) n(r) for some N particle system. Then we go and find all

antisymmetric N-particle wavefunctions

{∣

∣Ψ1[n]
〉

,
∣

∣Ψ2[n]
〉

,
∣

∣Ψ3[n]
〉

, . . . ,
∣

∣Ψ42[n]
〉

, . . . ,
∣

∣Ψ8473[n]
〉

, . . .
}

in the world for which
〈

Ψj[n]
∣

∣

N
∑

i=1

δ(r − r̂i)
∣

∣Ψj [n]
〉

= n(r) . (2.99)

Then, we calculate the expectation value

Aj
n ≡

〈

Ψj [n]
∣

∣T + Vee

∣

∣Ψj[n]
〉

, (2.100)

which is a number, and we look through all those numbers and find the smallest one Amin
n .

That smallest number Amin
n is also called the (value of the) “universal functional” F [n]

F [n] ≡ Amin
n =

〈

Ψjmin[n]
∣

∣T + Vee

∣

∣Ψjmin[n]
〉

, (2.101)

where
∣

∣Ψjmin[n]
〉

is a wavefunction (if there is more than one, it doesn’t matter which one

since we only care about the number Amin
n ) for which Aj

n has it’s smallest value.

If the density someone hands us happens to be a ground-state density n0(r) then the

wavefunction
∣

∣Ψjmin[n0]
〉

which gave the value Amin
n0

is the ground state |Ψ0〉. If more than

one gives the smallest value there is more than one ground state.

Similarly, we can define a “non-interacting kinetic energy functional” by searching for

the minimum of just the kinetic energy operator over states which yield the density n(r)

Ts[n] ≡ min
j

〈

Ψj [n]
∣

∣ T̂
∣

∣Ψj [n]
〉

. (2.102)
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The state which yields the ground state density n0(r) and also minimizes just the kinetic

energy operator is called the Kohn-Sham (KS) ground state |Φ0〉. Because the kinetic energy

operator is a single particle operator, the KS ground state is usually a Slater determinant.

The KS ground state determinant is made up of “KS orbitals” φi(r).

KS theory is based on the definition

F [n] = Ts[n] +
1

2

∫

d3r′
n(r)n(r′)

|r− r′| +Exc[n] , (2.103)

which defines Exc. Then, minimizing

E[n]−µN = F [n]+

∫

d3rn(r)vext(r)−µN = Ts[n]+
1

2

∫

d3r′
n(r)n(r′)

|r − r′| +Exc[n]+

∫

d3rn(r)vext(r)−µN ,

(2.104)

with respect to the density gives

δTs

δn(r)
+

∫

d3r′
n(r′)

|r − r′| +
δExc

δn(r)
+ vext(r) = µ , (2.105)

which is the same Euler equation as for (fictitious) non-interacting particles in a potential

vs(r) ≡
∫

d3r′
n(r′)

|r − r′| +
δExc

δn(r)
+ vext(r) . (2.106)

The (KS) orbitals for these (fictitious) non-interacting particles obey the equation

(

−1

2
∇2 + vs(r)

)

φi(r) = λiφi(r) , (2.107)

where λi is a Lagrange multiplier introduced to make the KS orbitals orthogonal. The KS

ground state is made up of the N orbitals having the N smallest values of λi

Φ0(r1, . . . , rN ) =
1√
N !

det(φi(rj)) . (2.108)

And the (exact) ground state density is

n0(r) =
N
∑

i=1

|φi(r)|2 . (2.109)

The only problem is that Exc cannot be determined exactly.

But, the great power of KS density functional theory is that, for a variety of systems,

Exc can be approximated well enough to obtain good results. These results, of course,
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officially only apply to the ground state. But, since we have so much luck in applying our

approximations (for Exc, for example) to the ground state we could just go ahead and try

applying KS density functional theory to excited states.

For example, the KS orbitals look so much like quasiparticle states, one could hardly

fault us for using their matrix elements and eigenvalues to compute spectra. Or, with the KS

orbitals specifed, we could define the KS Green’s function in a way that is most appropriate

as a starting point for perturbation theory:

GKS(x,x′; t) ≡ i 〈Φ0| T
(

eiHKStψ̂(x)e−iHKS tψ̂†(x′)
)

|Φ0〉

= −i
∞
∑

i=1

φi(x)φi
∗(x′)e−iλit (θ(t)(1 − ni) − θ(−t)ni) . (2.110)

Of course, it goes without saying that there will be corrections to DFT when applied to

excited states. For example, DFT underestimates the optical band-gap for a number of ma-

terials. This is not at all surprising since the KS Lagrange multipliers are not quasiparticle

energies. We can, however, systematically[51, 59] correct spectra within the overall frame-

work of DFT, for example, by applying self-energy[60, 61, 62] corrections to KS Lagrange

multipliers. But a full discussion of this point could fill another Ph.D. thesis.[63, 64]
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Chapter 3

ELECTRON INELASTIC MEAN FREE PATHS AND STOPPING

POWERS

3.1 Main Idea of Chapter

A method is presented for first-principles calculations of electron inelastic mean free paths

and stopping powers in condensed matter over a broad energy range. The method is based

on ab initio calculations of the dielectric function in the long wavelength limit using a real-

space Green’s function formalism, together with extensions to finite momentum transfer.

From these results we obtain the energy-loss function (ELF) and related quantities such as

optical-oscillator strengths and mean excitation energies. From a many-pole representation

of the dielectric function we then obtain the electron self-energy and inelastic mean free

paths (IMFP). Finally using our calculated dielectric function and the optical-data model

of Fernández-Varea et al., we obtain collision stopping powers (CSP) and penetration ranges.

The results are consistent with semi-empirical approaches and with experiment.

3.2 Introduction

The effect of inelastic losses on fast electrons has long been of theoretical and experimental

interest,[21, 7, 65] and continues to be an area of active development.[13, 6, 66] Theoretical

calculations of such losses depend on the dielectric response of a material over a broad spec-

trum. Moreover, calculations of these losses are particularly sensitive to the excitation spec-

trum of a material. While first-principles approaches have been developed for calculations of

losses at low energies, i.e., up to a few tens of eV,[67, 68] these methods are computationally

intensive and may be difficult to implement. Thus detailed calculations of inelastic losses

have generally been limited to semi-empirical approaches,[69, 13, 70, 71, 72, 73, 74] based on

experimental optical data. On the other hand, experimental data over a sufficiently broad

spectrum are not readily available for many materials of interest.
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In an effort to overcome these difficulties, we present here a first-principles, real-space ap-

proach for general calculations of inelastic losses. The approach is applicable to both periodic

and aperiodic condensed matter systems throughout the periodic table. Our calculations

are based on ab initio calculations of the complex dielectric function ε(ω) = ε1(ω) + iε2(ω)

as a function of the frequency ω, in the long-wavelength limit, together with extensions to

finite momentum transfer.[75] The calculations of ε(ω) are carried out using an all electron,

real-space Green’s function (RSGF) formalism as implemented in a generalization of the

FEFF8 code [1, 2] for full-spectrum calculations of optical constants. This generalization

of the FEFF8 code is referred to as FEFF8OP below.

We focus in this Chapter on several physical quantities which characterize the inelastic

interactions of a fast probe electron, a photo-electron, or other charged particle in condensed

matter. These include the inelastic mean-free-path (IMFP) and the collision stopping-power

(CSP). Each of these quantities depends on the complex dielectric function ε(ω) through

the energy-loss function (ELF) for a given material −[Im ε−1(ω)] = ε2(ω)/[ε1(ω)2 + ε2(ω)2],

which is calculated here up to x-ray energies. The ELF is directly related to the optical

oscillator strength (OOS). From the OOS, which characterizes the distribution of excitations

(e.g., plasmons, particle-hole excitations, etc.), we obtain values of the mean excitation

energy I. Recently a comprehensive relativistic treatment of inelastic losses and scattering

within the first Born approximation has been developed by Fernández-Varea et al. [13] Their

semi-empirical approach requires experimental optical data as input, and is referred to here

as the optical data model (ODM). This approach has the advantage that calculations of

quantities such as the CSP are reduced to a single numerical integration. To facilitate

precise comparisons, we have used their formulation for our CSP calculations, except for

the substitution of our ab initio dielectric function. Our approach is therefore referred to as

the “ab initio data model” (ADM). We have also compared IMFPs calculated using both

the ADM and a one-particle self-energy approach.

Formally the IMFP and the CSP are related to energy moments of the differential

cross-section (DCS) for inelastic collisions dσ/dω of a fast probe electron (or other charged

particle) of initial kinetic energy E with energy loss ω. The inverse IMFP is proportional
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to the zeroth moment of the DCS

1

λ(E)
= na

∫

dω
dσ(ω;E)

dω
= naσ

(0)(E) , (3.1)

where na is the atomic number density. Recall that here and elsewhere in this Chapter we

use Hartree atomic units (m = h̄ = e = 1). Thus distances are in Bohr (a0 ≈ 0.529 Å) and

energies are in Hartree (H ≈ 27.2 eV), unless otherwise specified. The CSP, here denoted

by S(E), is proportional to the first moment of the DCS

S(E) = na

∫

ω dω
dσ(ω;E)

dω
= naσ

(1)(E) . (3.2)

Since S(E) = −dE/dx, this quantity has units of force. From an integral of 1/S(E) over

energy we can then obtain the CSDA range1 R(E) as

R(E) =

∫

dx =

∫ E

0

dE

S(E)
. (3.3)

Implicit in Eqs. (3.1) and (3.2) are the kinematics of the colliding particles. In this Chapter

we choose kinematics relevant for probe electrons. Regardless of the probe, the sample is

characterized by the dielectric function ε(q, ω). In this Chapter we consider cubic materials

which we approximate as isotropic and homogeneous, i.e., in which the dielectric function

depends only on the magnitude of the momentum transfer q = |q| and the energy-loss ω.

The DCS may be considered as the sum of longitudinal (instantaneous Coulomb) and

transverse (virtual photon) contributions, denoted below with subscripts L and T respec-

tively. The detailed relativistic form of the relationship between each contribution to the

DCS and the ELF is obtained by integrating the double differential cross-section (DDCS)

over the kinematically allowed values of momentum-transfer,[13]

dσ(ω;E)

dω
=

∫

dq
dσ(q, ω;E)

dqdω
, (3.4)

where
dσ(q, ω)

dqdω
=
dσL(q, ω)

dqdω
+
dσT (q, ω)

dqdω
. (3.5)

1In actual calculations the lower limit in the definition of the CSDA range is usually taken as some small
fraction of the incident energy, e.g., 0.1×E, rather than zero. We could call such a definition the “CSDA
range to lose ninty percent of the incident energy”.
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As an example of how the dielectric function determines the DDCS, we recall (see Eq. (2.71))

the familiar non-relativistic result:

dσ(q, ω)

dqdω
=
dσL(q, ω)

dqdω
= − 2

πnaqv2
Im ε−1(q, ω) (3.6)

where v is the velocity of the probe electron. The relativistic analog of Eq. (3.6) is similar

and is given explicitly in Eqs. (8) and (9) of Ref. [13].

One of the main goals of this work is to calculate mean excitation energies I and IMFPs

for general condensed matter systems over an energy range up to about 100 keV. Another

goal is to calculate CSPs and penetration ranges over a range of order 10 MeV. We compare

our results both with other semi-empirical approaches and with experimental data and

tabulations.

3.3 Model Dielectric Function

Both the IMFP and the CSP can be computed as convolutions of the momentum-transfer

and energy-loss dependent inverse dielectric function ε−1(q, ω), with relativistic weighting

functions. The precise details of the weighting functions are discussed further below. In this

Section we discuss the extension of our ab initio calculation of ε(q, ω) in the long wavelength

(q → 0) limit to finite q.[13, 76, 69, 77, 78] In this work ε(ω) ≡ ε(0, ω) is calculated from

the UV to x-ray energies using the ab initio real-space Green’s function code FEFF8OP

[2, 79], which sums the contributions to the spectra over all occupied core and semi-core

initial states. As an example, the calculated ELF for Ag is shown in Fig. 3.1.

We have chosen to discuss the extension to finite-q in terms of the ELF, but we could

just as well have used the OOS g(ω), with differs by a factor proportional to ω, i.e.,

g(ω) = − 2

π

Z

Ω2
p

ω Im
[

ε−1(ω)
]

, (3.7)

where Ω2
p = 4πnaZ is the all-electron plasma frequency and Z is the atomic number. As an

illustration of the quantitative agreement of our approach, three ab initio OOS calculations,

spanning a range of atomic numbers, are compared to experiment in Fig. 3.2. Clearly the

approximations in FEFF8 such as the use of atomic core initial states in the OOS calculation

and muffin-tin scattering potentials are adequate to yield good agreement with experiment
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Figure 3.1: Energy-loss function −[Im ε−1(ω)] of fcc silver as calculated by ab intio theory[2]
(solid line) using the FEFFOP (see text) code and from experiment [3, 4] (points).

for UV energies and above. Additional examples are tabulated on the WWW.[80] For optical

frequencies and below, however, the agreement is only semi-quantitative, but the errors tend

to be suppressed in the OOS due to the overall factor of ω in Eq. (3.7). Further discussion

of properties of our calculated OOS, encluding the f-sum rule, can be found elsewhere.[2, 79]

A global measure of the excitation spectra is given by the “mean excitation energy”

ln I = 〈lnω〉, where the “mean” 〈. . .〉 refers to an average with respect to the OOS weighting

function, i.e.,

ln I =

∫

dω g(ω) lnω
∫

dω g(ω)
. (3.8)

The quantity I appears in expressions for the collision stopping power, as shown in Sec.

V. below. In Table 3.1 theoretical values of I, as calculated from our OOS spectra, are

compared with those calculated from experimental optical constants,[4] and also with in-

ternationally recommended (ICRU) values for several elements. For low Z elements, the

theoretical values of I are clearly in good agreement with measured values. For high Z

elements I is predicted by Thomas-Fermi models to be proportional to Z. The proportion-
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Figure 3.2: Optical oscillator strengths for Cu (upper), Ag (middle) and Au (lower) as
calculated by ab initio theory[2] (solid line) using the FEFFOP code (see text) and compared
to experiment [3, 4] (points).
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Table 3.1: Mean excitation energies I for several elements as calculated in this work, and
for comparison, results calculated from experimental [15, 4] optical constants, and recom-
mended (ICRU [16]) values.

Element I theory (eV) I expt (eV) ICRU (eV)

Aluminum 165 167 [15], 162 [4] 166

Silicon 174 173 [15] 173

Copper 312 319 [4] 322

Silver 420 382 [4] 470

Gold 662 752 [4] 790

ality constant can be determined experimentally to give a semi-empirical “rule of thumb”

I ≈ 10Z (eV). In the high Z regime the agreement between theory and experiment appears

to be only semi-quantitative, but it should be mentioned that the ratio of I to Z is not in

fact constant but rather it varies from around 9 to around 11 and has been measured to

be as low as 8.32 for lanthanum.[81] Furthermore, only the logarithm of I is needed for the

determination of physical quantities, and typical errors in ln I from the values in Table I

are only a few percent. For example, for a typical case of 100 keV electrons in gold, the

error in stopping powers calculated using experimental versus theoretical values of I is only

around 2%. Furthermore, this error decreases as the incoming electron energy increases.

On the other hand, at the lowest energies of interest (e.g. ∼10 keV for Au) where the Bethe

Formula (and the usefulness of ln I for calculating the CSP) breaks down, the percent dif-

ference between experimental and theoretical CSPs is still only around 6%. The method of

calculating the CSP at lower energies without using ln I is described in Sec. V.

In the IMFP calculations presented here we consider two different extensions to finite

q, as described below. Since our calculations show that both lead to similar results for the

IMFP, we only present calculations of the CSP with one of these extensions. However, all

our calculations use the same full-spectrum calculations of ε(ω). For our IMFP calculations,

we have used the many-pole representation of the dielectric function of Ref. [75], i.e. we

approximate our calculated ELF −Im [ε−1(ω)] as a sum of many (typically of order 100)
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discrete poles. This “many-pole” model, denoted by ε−1
N (ω), has the standard analytic form

for dielectric response,

ε−1
N (ω) = 1 +

N
∑

j=1

gj

ω2
j

ω2 − ω2
j + iωδ

, (3.9)

where δω is a small damping term, comparable to the pole separations. Fig. 3.3 compares

the IMFP for Cu as calculated using both our many-pole model and a single plasmon-pole

model.[62] This single-pole model is essentially an Einstein-model for the response in which

excitations (for a given momentum transfer q) occur at the plasmon excitation energy ωq.

Thus the single-pole model is a special case of the many-pole model in which all but one of

the weights gj appearing in Eq. (3.9) are set to zero. In our many-pole representation, the

parameters ωj are taken to be evenly spaced along the energy-loss axis, and the weights gj

are fixed by matching our calculation of Im
[

ε−1(ω)
]

according to the formula

gj = − 2

π

1

ω2
j

∫

∆j

dω ω Im
[

ε−1(ω)
]

, (3.10)

where the integration region ∆j is from (ωj + ωj−1)/2 to (ωj + ωj+1)/2 and the similarity

with Eq. (3.7) is apparent. Finally, the extension to finite q is obtained by shifting the pole

locations via the substitution [62]

ω2
j → ω2

j +
vF

2q2

3
+
q4

4
, (3.11)

where vF is the Fermi velocity as calculated at the mean interstitial electron density from

the FEFF8 code. Further details of our approach, though not essential to our discussion

here, are given in Refs. [75], [79] and [64]. The above substitution is sufficient to induce

the so-called “Bethe ridge” for large momentum-transfer where the ELF is peaked about

the point ω = q2/2. In other words, our model for large q satisfies the approximate relation

−Im
[

ε−1(q, ω)
]

≈ πΩ2
pδ(ω

2 −Q2), (3.12)

where Q ≡ q2/2. Consequently the above extension can be regarded as an interpolation

formula between small and large Q.

For CSP calculations, our aim here is to replace experimental optical data (which is

used as input in the ODM of Ref. [13]) with theoretical “optical data” from our ab initio
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calculation of ε(ω), i.e., with an ab initio data model (ADM). Thus for consistency we follow

the formulation of Ref. [13] as closely as possible in comparisons with their CSP results. In

particular we have also implemented their delta-oscillator [76, 82] extension to finite q for

our CSP calculations. For non-relativistic probe electrons the delta-oscillator model extends

ε(ω) to finite q according to the relation

−Im
[

ε−1(q, ω)
]

= πΩ2
p

Z(Q)

Z
δ(ω2 −Q2)

− Im
[

ε−1(ω)
]

θ(ω −Q) , (3.13)

where Z(Q) is the number of electrons that contribute to the zero momentum-transfer

sum-rule with upper energy limit Q,

Z(Q) = − 2Z

πΩ2
p

∫ Q

0
dω ω Im

[

ε−1(ω)
]

. (3.14)

Because Z(Q) approaches Z for large q we see that the extension to finite q in Eq. (3.13)

gives the Bethe ridge in much the same way as that of Eq. (3.12).

Although the finite-q extension algorithms in this Chapter differ somewhat, we do not

expect our non-relativistic results to depend substantially on the details. The reason is

that both algorithms reduce to the correct long-wavelength limit for low q, and both give

the correct Bethe ridge dispersion for high q. This expectation is supported by the IMFP

results in Sec. IV. Moreover our results for the q dependence are roughly consistent with

the explicit real space calculations of −Im
[

ε−1(q, ω)
]

at finite q of Soininen et al. [23].

3.4 Electron Self-Energy

Inelastic losses in the propagation of a fast charged particle can be expressed in terms

of one-particle self-energy Σ(E). This complex-valued quantity is a dynamically screened

exchange-correlation contribution to the quasi-particle energy-momentum relation

E =
p2

2
+ Σ(E), (3.15)

where p is the quasi-particle momentum. Our approach for calculating Σ(E) is based on

the “GW” approximation of Hedin,[51] together with our many-pole representation of the

dielectric function, as summarized above [75]. In the GW method the vertex-corrections
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to the electron self-energy are neglected, yielding an expression for Σ(E) in terms of the

electron propagator G and the screened Coulomb potential acting on an electron W , i.e.,

Σ(x,x′;E) = i

∫

dω

2π
e−iωηG(x,x′;E − ω)W (x,x′;ω), (3.16)

where η is a positive infinitesimal and the (x,x′) are spatial indices. Within the RSGF

approach, the propagator G is calculated using a multiple-scattering expansion G = G0 +

G0tG0 + · · · [1]. However, for simplicity in this work, we neglect the multiple-scattering

terms (which would give rise to fluctuations in the self-energy) and simply use the free

propagator G0 for a homogeneous electron gas at the mean interstitial density. Then the

screened Coulomb interaction for a spatially homogeneous system can be obtained from the

Fourier transform W (q, ω) = F [W (x− x′, t)] and can be expressed in terms of the Coulomb

potential Vq = 4π/q2 and the dielectric function ε(q, ω) as:

W (q, ω) = ε−1(q, ω)Vq . (3.17)

The calculations of Σ(E) are then carried out using the many-pole representation of Eq. (3.9)

and (3.11). With this homogeneous model, our calculated Σ(E) is then the average self-

energy in the system. Further details are given in Ref. [64].

3.5 Inelastic Mean Free Path

We first calculate Eq. (3.1) for the IMFP in terms of the excited state self-energy Σ(E) of

the fast electron.

λ(E) =

√

E

2

1

|ImΣ(E)| . (3.18)

Eq. (3.18) for the IMFP is consistent with the decay of a single electron wavefunction whose

time dependence is given by e−iE(p)t.[83] Eq. (3.18) is also equivalent to Eq. (3.1) because

the self-energy is proportional to the forward scattering amplitude, i.e.,

ImΣ(p) = −2πna Im f(p,p) . (3.19)

The equivalence of Eq. (3.1) and Eq. (3.18) then follows from the optical theorem. It

should be noted, however, that our calculations of the IMFP in terms of the self-energy via

Eqn. (3.18) do not enclude relativistic effects, whereas Eqn. (3.1) is fully relativistic.
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Figure 3.3: Inelastic mean free paths for copper calculated using the same ab initio dielectric
function as the basis of two different theoretical models: The many-pole self-energy (MPM)
model of Eq. (3.18) and the single-pole self-energy model (described in the text). These
theoretical results are compared to: Exp. (a) [5] (squares), Exps. (b) (circles, the references
for Exps. (b) are given in Ref. [6]), and a semi-empirical curve which is described in Ref. [6].
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Figure 3.4: Inelastic mean free paths for Ag (upper) and Au (lower) calculated using the
same ab initio dielectric function as the basis for two different theoretical models: the
many-pole self-energy (MPM) model of Eq. (3.18), and the “ab initio data” model (ADM)
described in the introduction. The theoretical results are compared to a semi-empirical
curve [6] and to multiple experimental data sets. The references for the Exps. are given
in Ref. [6]. The theoretical models are plotted over the expected range of validity of the
semi-empirical curve.
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The explicit dependence of the self-energy on the dielectric function in Eq. (3.17), the

many-pole model of Eq. (3.9), and (3.11), and the full-spectrum FEFF8OP code are all that

are needed to carry out ab initio calculations of IMFPs according to Eq. (3.18). Our many-

pole model IMFP calculations (labeled MPM) are shown for several materials in Figs. 3.3

and 3.4, together with best fits [6] to currently available data. The fit lines in Figs. 3.3 and

3.4 are based on multiple data sets which were taken up to 3000 eV and are expected to

accurately describe the IMFP as low as 50 eV. Fig. 3.4 also shows a calculation (labeled

“ADM”) which uses our ab initio ε(ω) as input data to the semi-empirical optical-data

model of Ref. [13]. Note that the MPM and ADM results are in in good agreement with

each other, which verifies that the different extensions to finite q discussed in Sec. II. do

not lead to substantially different results. Both theoretical models are plotted here over the

expected range of validity of the fit line, but can be extended with our codes to energies up

to about 100 keV. Although the agreement with experiment is reasonable, our calculations

tend to underestimate the experimental IMFP somewhat for high Z materials.

3.6 Stopping Power

As noted in the introduction the CSP is the net reaction force S(E) = −dE/dx due to

electronic collisions at a given energy E that slows a fast probe electron. Over the range of

energies from about 10 eV up to about 10 MeV the CSP is the main contribution to the

total stopping power. Above this energy the total stopping power may be dominated by

bremsstrahlung.[16] The CSP is calculated in this work using Eq. (3.2), where the DCS is

related to our ab initio ELF using the formulation of Ref. [13]. This model is thought to be

applicable with confidence for energies above about 100 eV, and appears to be applicable

as low as about 10 eV. However, it is not obvious why a model based on the first Born

approximation should be valid at such low energies. Furthermore, in the Born approximation

the CSP is proportional to the square of the incoming particle charge and thus non-linear

corrections such as the Barkas effect [84] are not encluded in this model. In the relativistic

limit Eq. (3.2) reduces to the well-known Bethe-formula [21, 85, 65, 7] for the stopping
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power

S(E) =
π

2

Ω2
p

v2

[

ln

(

E2

I2

γ + 1

2

)

+ F (γ) − δF (γ)

]

, (3.20)

where γ = (1 − v2/c2)−1/2 is the relativistic dilation factor, and F (γ) is given by

F (γ) =

[

1

γ2
− 2γ − 1

γ2
ln 2 +

1

8

(

γ − 1

γ

)2
]

. (3.21)

Also appearing in Eq. (3.20) are the “mean excitation energy” I defined in Sec. II., and

Fermi’s density correction [7] δF . The density correction δF is due solely to transverse

interactions, and can be neglected for non-relativistic particles. A detailed description of

how δF can be calculated as a functional of the ELF, is given in Ref. [13]. Fig. 3.5 shows

the density correction δF (E) for copper as calculated using our ab initio dielectric function,

and for comparison, the semi-empirical values used by ESTAR [8]. ESTAR is an on-line

implementation of Eq. (3.20) which takes semi-empirical values of I as input. The mean

excitation energy and the density correction have, heretofore, been difficult to calculate

from first-principles, as they require accurate values of the OOS over a very large energy

spectrum. However, our full-spectrum approach clearly gives reasonable agreement with

experiment.

For relativistic probe electrons, the excellent agreement of the Bethe formula in Eq. (3.20)

for the CSP is well known, so we have included data from ESTAR in lieu of experiment

where necessary. The difference between Eq. (3.20) and Eq. (3.2) only appears in the non-

relativistic regime, and can be seen in Fig. 3.6, where Eq. (3.20) begins to fail around 5000

eV. In order to calculate CSPs that are in good agreement with experiment for both non-

relativistic and relativistic probe electrons we apply Eq. (3.2) with the more general form

of dσ/dω given in Ref. [13], but using our calculated dielectric function as input.

Figs. 3.6 and 3.7 show that the calculated CSPs for high energy electrons for the systems

studied here (Cu, Ag and Au) are in good agreement with the ESTAR results. For lower

energies the CSP calculations of this work show significantly better agreement with data

than the Bethe formula.
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Figure 3.5: Fermi’s density effect correction[7] to the stopping power from Eq. (3.20) as
calculated in this work (solid), and compared to semi-empirical values [8] for copper (dashes).
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function of Ref. [2] (solid) in the ADM (see text). Also shown are semi-empirical values of
the CSP from ESTAR [8] (solid squares), and semi-empirical CSP values (labeled TPP-calc)
based on the Penn model [9] (circles), and CSP values from experimental data: (+) [10],
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3.7 Conclusions

We have presented a general real-space Green’s function approach for ab initio calculations of

inelastic losses and stopping powers in condensed matter. Unlike most current approaches,

our method is based on ab initio calculations of dielectric response, and does not rely on

empirical optical data. We also find that accurate calculations of inelastic losses of probe

electrons depend primarily on the quality of the calculated q = 0 dielectric function, and

not on the details of the extension to finite q. Using our ab initio dielectric function, we also

calculate the mean excitation energy and thus stopping powers for relativistic electrons,

obtaining results in good agreement with experimental data. Furthermore, using the ab

initio ADM we can extend the stopping power calculation down to energies of ∼ 10 eV,

i.e., much lower than the Bethe formula, while still maintaining reasonable agreement with

experiment. Our approach for calculating inelastic losses of probe electrons can be easily

extended to probe positrons. In conclusion, we believe our approach has the potential

to complement or provide an alternative to semi-empirical approaches for calculations of

IMFPs and stopping powers of electrons in condensed matter.
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Chapter 4

EELS AND MAGIC ANGLE

4.1 Main Idea of The Chapter

Recently it has been demonstrated that a careful treatment of both longitudinal and trans-

verse matrix elements in electron energy loss spectra can explain the mystery of relativistic

effects on the magic angle. Here we show that there is an additional correction of order

(Zα)2 where Z is the atomic number and α the fine structure constant, which is not nec-

essarily small for heavy elements. Moreover, we suggest that macroscopic electrodynamic

effects can give further corrections which can break the sample-independence of the magic

angle.

4.2 Introduction: Magic Angle Mystery

The title of this Section is in reference to a recent work by Jouffrey et al. [86] with the title

“The Magic Angle: A Solved Mystery.” The magic angle in electron energy loss spectroscopy

(EELS) is a special value of the microscope collection-angle αc at which the measured

spectrum “magically” becomes independent of the angle between the incoming beam and the

sample “c-axis.” The mystery, in the context of 200 keV electron microscopy, is that standard

semi-relativistic quantum theory yields a ratio of the magic angle θM to “characteristic

angle” θE of more than twice the observed [14] value. Unfortunately, time [87] and again,[14,

88] the theoretical justification of the factor of two turned out to be an errant factor of two

elsewhere in the calculation. A key contribution of Jouffrey et al. was the observation

that relativistic “transverse” effects, when properly included in the theory, naturally give

a factor of two correction to the non-relativistic magic angle. Here we show that there are

yet additional corrections to the theory which can even break the sample independence of

the magic angle.

As in Ref. [86], we consider here the problem of a relativistic probe electron scattering
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off of a macroscopic condensed matter sample. Similar problems have been solved long ago

using both semi-classical [89] and fully quantum-mechanical approachs.[21, 90, 65] Indeed,

the fully quantum-mechanical, relativistic case of scattering two plane-wave electrons has

long been a textbook problem.[91, 49] This classic problem was revived recently in the works

of Jouffrey et al. [86] and of Schattschneider et al.,[92] in which a “flaw” in the standard

theory is pointed out. The flaw is the approximation that the so-called “longitudinal” and

“transverse” matrix elements for the scattering process may be summed incoherently, as

argued by Fano in a seminal paper.[90] In fact, this approximation is only valid when the

sample under consideration posseses certain symmetries. In a later review article,[65] Fano

states this condition explicitly; namely that his original formula for the cross-section is only

applicable to systems of cubic symmetry. However, this caveat, seems to have been generally

ignored, and hence turns out to be the source of the magic angle “mystery”.[86] Jouffrey

et al., and later Schattschneider et al., showed that if one correctly sums and squares the

transition matrix elements then, in the dipole approximation, one finds the magic angle

corrected by approximately a factor of two.

Our aim here is to examine the theory in more detail in order to derive both relativistic

and material-dependent corrections to the magic angle. In Section 4.3 we consider relativis-

tic electron scattering within the formalism of quantum electrodynamics (QED). Working

in the Coulomb gauge, we show that one can almost reproduce the results of Jouffrey et

al. and the theory of Schattschneider et al., apart from a simple correction term of order

h̄ω/mc2, which is not always negligible. Here h̄ω is the energy lost by the probe and mc2

is the rest energy of an electron. In Section 4.4 we suggest the possibility of incorporat-

ing macroscopic electrodynamic effects into the theory, which can break the symmetry of

sample independence of the magic angle.

4.3 Coulomb Gauge Calculation

An appealing aspect of the formalism of Schattschneider et al. is its simplicity. Their

approach is similar to the semi-classical approach of Møller,[89] but with the added simpli-

fication of working with a probe and sample described by the Schrödinger equation, rather

than the Dirac equation. They also find that the theory is simplified by choosing to work



63

in the Lorentz gauge. Unfortunately, however, the theory of Møller is somewhat ad hoc in

that a classical calculation in the Lorentz gauge is modified by replacing the product of two

classical charge densities by the product of four different wavefunctions in order to obtain

the transition matrix element. For the Møller case this procedure is justified a posteriori by

the fact that it reproduces the correct result, but is only rigorously justified by appealing to

the method of second quantization.[91] Møller’s procedure is physically reasonable a priori,

because Møller was interested in the scattering of electrons in vacuum. However, the theory

of Schattschneider et al., which largely mimics Møller’s theory, is less physically reasonable

a priori, since the electrons are not scattering in vacuum, but are inside a solid which can

screen the electrons. Nevertheless, since the discrepancy is small, the Schattschneider et

al., theory is justified a posteriori to a lesser extent by experiment.[14] We thus refer to

the theory of Schattschneider et al. as a “vacuum-relativisitic theory.” Consequently, in an

effort to account for the discrepancy with experiment, we feel that it is useful to rederive

the results of Jouffrey et al. from a more fundamental starting point.

It is easy to see that the theory of Schattschneider et al. is not formally exact, though for

many materials the error in the vacuum relativistic limit is negligible. In fact, the discrep-

ancy can be easily explained via single-particle quantum mechanics: although Schattschnei-

der et al. work explicitly in the Lorentz gauge, they also make the assumption that the

momentum and the vector potential commute,

p · A(r)
?
= A(r) · p. (4.1)

Of course, this commutation relation is only exact in the Coulomb gauge. In the end,

however, the error in this approximation only effects the final results (e.g., matrix elements)

by a correction of order h̄ω/mc2 compared to unity, where h̄ω is the energy lost by the probe.

Since h̄ω/mc2 is at most (Zα)2 for deep-core energy loss, the effect is usually negligible,

except of course, for very heavy atoms. To see how corrections such as the above enter

into the theory, and further to determine whether or not such corrections are meaningful or

simply artifacts of the various approximations used in the theory of Schattschneider et al.,

we find it useful to present a fully quantum-mechanical, relativistic many-body treatment

along the lines of Fano,[65] but without any assumption of symmetry of the sample. Our
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treatment is at least as general as that of Schattschneider et al. as far as the symmetry of

the sample is concerned. Thus going beyond the formulations of Schattschneider et al. and

Møller, we take as our starting point the many-particle QED Hamiltonian. We then show

that in a single-particle approximation the theory yields the result of Schattschneider et

al. together with the correction mentioned above.

Our starting point therefore is the Hamiltonian in Coulomb gauge [91]

H = Hel +Hint +Hrad , (4.2)

where the Hamiltonian has been split into three parts: i) the unperturbed electron part

Hel =

∫

d3xψ†(x)
(

cα · p + βmc2
)

ψ(x), (4.3)

where ψ(x) is the second-quantized Dirac field, αi and β are the usual Dirac matrices, m

is the electron mass, and c is the speed of light;

ii) the unperturbed (transverse) radiation part

Hrad =
∑

k

2
∑

i=1

a†
k,iak,ih̄ωk, (4.4)

where ak,i destroys a photon of momentum k, polarization εk,i, and energy h̄ωk; and

iii) the interaction part

Hint = + e

∫

d3xψ†(x)α · A(x)ψ(x),

+
e2

2

∫

d3xd3y
ψ†(x)ψ†(y)ψ(y)ψ(x)

|x − y| , (4.5)

where

A(x) =
∑

k,i

√

2πh̄c2

V ωk

(

ak,iεk,ie
ik·x + a†k,iε

∗
k,ie

−ik·x
)

, (4.6)

e = |e| is the charge of the proton, and V is the system volume.

Let us next specialize to the case of a fixed number (N + 1) of electrons where the

(N + 1)-th electron is singled out as the “fast probe” traveling with velocity v0, and the

remaining N electrons make up the sample. We also introduce a lattice or cluster of ion-

cores (below we consider only elemental solids of atomic number Z but the generalization
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to more complex systems is obvious) which is treated classically, and which gives rise to

a potential ve-core(x) =
∑N/Z

i=1 (−Ze2)/|x − Ri| as seen by the electrons. In this case our

Hamiltonian becomes:

H =
[

cα · (p +
e

c
A(r)) + βmc2

]

+ ve-core(r)

+

N
∑

i=1

[

cα(i) · (p(i) +
e

c
A(r(i))) + β(i)mc2

]

+ e2
N
∑

i=1

1

|r − r(i)| +
e2

2

N
∑

1=i6=j=1

1

|r(i) − r(j)|

+

N
∑

i=1

ve-core(r
(i)) + vcore-core +Hrad , (4.7)

where the coordinates which are not labelled by an index refer to the probe electron. The

interaction vcore-core between ion cores is a constant and is henceforth dropped.

To proceed to a single-particle approximation for the sample, the interaction of the

sample electrons among themselves and with the potential of the ion cores may be taken into

account by introducing a single-particle self-consistent potential v(x) which includes both

ve-core(x) and exchange-correlation effects. The interaction of the probe electron with the

effective single electron of the sample will be considered explicitly. The difference between

this interaction and the actual interaction between the probe and sample can be accounted

for by introducing another potential v ′(x) which is not necessarily the same as v(x); v ′(x)

is, in theory, “closer” to the pure ve-core(x) potential than v(x) though, in practice, this

difference may not be of interest (see Section 4.6 for further explanation of this point). The

potential v′(x) leads to diffraction of the probe electron, which will not be considered in

this Chapter in order to make contact with the theory of Schattschneider et al. It is also

for this reason that we have introduced a single-particle picture of the sample, along with

the fact that we want to apply this theory to real condensed matter systems in a practical

way. The extension to the many-body case, in which the only single-body potential seen

by the probe is due to the ion-cores, is given in Section 4.6. Thus using the single-particle
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approximation for the sample,

H =
[

cα · [p +
e

c
A(r)] + βmc2

]

+
[

cαs · [ps +
e

c
A(rs)] + βsmc

2
]

+ v′(r) + e2
1

|r − rs|
+ v(rs) +Hrad, (4.8)

where the quantities labeled by the letter s refer to the sample electron and the unlabeled

quantites refer to the probe electron. In the remainder of this Chapter we set v ′ → 0,

though the generalization of the theory to include diffraction is not expected to be difficult.

As it turns out,[93] we may start from an effective Schrödinger treatment of both

the sample and the probe rather than a Dirac treatment. Working with a Schrödinger

equation treatment facilitates contact with the “vacuum-relativistic” magic-angle theory of

Schattschneider et al.

The treatment of the probe by a “relativistically corrected” Schrödinger equation is

standard practice [94] in much of EELS theory, and is appropriate [93] for modern micro-

scope energies of interest here (e.g., a few hundred keV). However, in order to correctly

treat the probe via a “relativistically corrected” Schrödinger equation we must also neglect

the effects of spin. In particular, the results which we will “reproduce” correspond to the

Dirac treatment averaged over initial spins and summed over final spins. The essential

point of our interest presently is just that, assuming spins are ignored, a “relativistically-

corrected” Schrödinger equation reproduces the correct first Born approximation results,

including transverse response. There is no reason to expect that correct results (obtained

from the Dirac equation) will be obtained at higher order by starting from a Schrödinger-

type equation. As stated above, the only real motivation for working with a Schrödinger

equation is to make our formal developments resemble those of Schattschneider et al for

ease of comparison.

The relativistic correction to the Schrödinger equation of the probe consists in simply re-

placing the mass of the probe m by the relativistic mass m′ = mγ where γ = 1/
√

1 − v2
0/c

2.

We will indicate later how the results change if we retain a full Dirac treatment of the
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electrons. Thus we may start with the Hamiltonian

H =
[p + (e/c)A(r)]2

2m′
+

[ps + (e/c)A(rs)]
2

2m

+ v(rs) +
e2

|rs − r| +Hrad

≡ H0 +
e

m′c
p · A(r) +

e

mc
ps · A(rs)

+
e2

|rs − rp|
+O(A2) . (4.9)

In this theory the unperturbed states are then direct products of unperturbed sample

electron states (which in calculations can be described, for example, by the computer code

FEFF8,[1]) unperturbed probe electron states (plane-waves, ignoring diffraction), and the

free (transverse) photon states. Also, from now on we ignore the interaction terms which

are O(A2). Thus our perturbation is

U =
e2

|r − rs|
+

e

m′c
p · A(r) +

e

mc
ps · A(rs), (4.10)

and we are interested in matrix elements of

U + UG0U + . . . (4.11)

where the one-particle Green’s function is

G0(E) =
1

E −H0 + iη
(4.12)

and η is a postive infinitesimal. The matrix elements are taken between initial and final

states (ordered as: probe, sample, photon)

|I〉 = |kI〉 |i〉 |0〉 and |F 〉 = |kF 〉 |f〉 |0〉 . (4.13)

To lowest order (e2) there will be a “longitudinal” (instantaneous Coulomb) contribution

to the matrix element, and a “transverse” (photon mediated) contribution, as illustrated in

Fig. 1.

Instead of elaborating the details from standard perturbation theory, we simply write

down the result for the matrix element

M =
4πe2

V

[

1

q2
〈f | eiq·rs |i〉

+
1

ω2 − c2q2
kj

T

m′
〈f | p

j
s

m
eiq·rs |i〉

]

, (4.14)
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kF

i f

kI

q

kF

i f

kI

q , ω

kF

i f

kI

−q ,−ω

Figure 4.1: Feynman diagrams for the scattering process due to both the instantaneous
Coulomb interaction (upper) and the transverse photon interaction (middle, lower). The
solid lines labeled by momenta kI and kF represent the probe particle; thick solid lines
labeled by the letters i and f represent the sample particle; the dashed line is the instanta-
neous Coulomb interaction; and the wiggly lines are transverse photons. Time flows to the
right.
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kI

kF

kT

q

q⊥

Figure 4.2: The relevant momenta: kI is the initial momentum of the probe particle, kF

is the final momentum of the probe particle, q is the momentum transfer kI − kF and kT

is the part of both the initial of final momenta which is perpendicular to the momentum
transfer.

where kT (see Fig. 2) is the part of the initial (or final) momentum which is perpendicular

to the momentum transfer h̄q. In the remainder of this Chapter we will choose our units

such that h̄ = 1.

kj
T =

(

δlj −
qlqj
q2

)

kl
F =

(

δlj −
qlqj
q2

)

kl
I . (4.15)

The result of Eq. (4.14) is easy to understand diagramatically. For example, to each

wiggly line of momentum q and energy ω we may assign a value

1

ω − c|q|

(

δij −
qiqj
q2

)

2πc

V |q| . (4.16)

At this point we note that the relativistic many-body version of Eq. (4.14) can be obtained

by making intuitively reasonable replacements such as p/m→ cα, eiq·rs →∑

i e
iq·r(i)

. See

Section 4.6 for further details.

Eq. (4.14) is equivalent to the matrix elements given by Fano in Eq. (12) of Ref. [65].

The cross-section given by Fano in Eq. (16) of Ref. [65], in which the matrix elements have

been summed incoherently, is not generally correct and is the source of the magic angle

“mystery”.[92]

Before continuing to the dipole approximation it is useful to rewrite Eq. (4.14) using the
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definition

kT = kI − q
q · kI

q2
(4.17)

to eliminate kT in favor of kI (or equivalently v0 = kI/m
′). Making this replacement we

obtain

M =
4πe2

V

[

1

q2
〈f | eiq·r |i〉 − q · v0

mq2
〈f | q · peiq·r |i〉
ω2 − c2q2

+
〈f |v0 · (p/m)eiq·r |i〉

ω2 − c2q2

]

, (4.18)

which can be rewritten as:

M =
4πe2

V

1

q2 − (ω2/c2)
〈f | eiq·r ×

[

1 − v0 · p
mc2

− ω2

q2c2
(1 − q · p

mω
)

]

|i〉 , (4.19)

where we have made use of q · v0 = ω in order to cancel certain terms which appear after

commuting the exponential through to the far left. Also, we have removed the label s from

the position and momentum of the sample electron. This change in notation will be used

throughout the remainder of this Chapter.

Eq. (4.19) is the same as Eq. (6) of Schattschneider et al., except for an “extra” term

〈f | eiq·r
(

1 − q · p
mω

)

|i〉 . (4.20)

Fortunately, this term may be simplified by considering the commutator

[eiq·r,H0] = [eiq·r,
p2

2m
] = eiq·r

(

−p · q
m

− q2

2m

)

, (4.21)

where the first equals sign follows from the fact that eiq·r commutes with everything in H0

except for the kinetic term of the sample electron (by its definition H0 explicitly contains

only local potentials). Then, using the fact that for any operator O,

〈f | [O,H0] |i〉 = 〈f |O |i〉 (Ei −Ef ) = 〈f |O |i〉 (−ω) (4.22)

we have

〈f | eiq·r |i〉 (−ω) = −〈f | eiq·r(
p · q
m

+
q2

2m
) |i〉 (4.23)
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and thus

〈f | eiq·r(1 − p · q
mω

) |i〉 = 〈f | eiq·r q2

2mω
|i〉 . (4.24)

Making the above replacement in Eq. (4.19) we find

M =
4πe2

V

1

q2 − ω2/c2

× 〈f | eiq·r
(

1 − v0 · p
mc2

− ω2

q2c2
q2

2mω

)

|i〉 (4.25)

and we see that the “extra” term only changes the result by order ω/mc2 where mc2 is the

rest energy of an electron and ω is the energy lost;

M =
4πe2

V

1

q2 − ω2/c2
〈f | eiq·r

(

1 − v0 · p
mc2

− ω

2mc2

)

|i〉

=
4πe2

V

1

q2 − ω2/c2
〈f | eiq·r

(

1 − v0

mc2
· (p +

q

2
)
)

|i〉 . (4.26)

Eq. (4.26) is the same as what Schattschneider et al. would have obtained if they had not

neglected the commutator [p,A].

That a term proportional to p+q/2 rather than simply p appears in Eq. (4.26) is correct

and can be understood from the following simple example: The interaction Hamiltonian for

a point particle with an external field is given by eφ− ev · A/c, or rather

Hint ∼
∫

d3x

(

n(x)φ(x) − 1

c
j(x) · A(x)

)

, (4.27)

where n(x) is the density and j(x) is the current, and where the above integral, with

the potentials considered as functions of the source location, is a convolution in space and

thus a product in Fourier space–the rough correspondence indicated by the “∼” symbol in

Eq. (4.27) is considered more rigorously in the Section 4.6. Next, we note that the Fourier

transform of the current density (in second-quantization) is given for a free particle by [95]

j(q) =
1

mV

∑

k

(

k +
q

2

)

c†k+qck , (4.28)

where

ψ(x) =
∑

k

cke
ik·x , (4.29)
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and where q is considered to be the momentum transferred to the sample. This is in

agreement with the usual conventions of EELS

q = kI − kF . (4.30)

Thus we see that Eq. (4.26) is indeed correct, in both sign and magnitude of the “extra”

term.

4.3.1 Dipole Approximation and the Magic Angle

In the dipole approximation Eq. (4.26) reduces to

4πe2

V

1

q2 − ω2/c2
〈f |
(

iq · r − v0 · p
mc2

)

|i〉 . (4.31)

The term (1−v0 ·q/2mc2) does not contribute because 〈i|f〉 = 0. Now, we make use of the

replacement p/m→ iωr which is appropriate within the matrix element to find

4πe2

V

i

q2 − ω2/c2
〈f |
(

q − v0(q · v0)

c2

)

· r |i〉 . (4.32)

We have thus found the same “shortened q-vector” that appears in Eq. (15) of Schattschnei-

der et al. and Eq. (2) of Jouffrey et al. Specifically, for an initial electron velocity v0 in the

z-direction, we have found the replacement qz → qz(1 − v2
0/c

2) which in turn leads to a

significant correction (on the order of 100 percent for typical electron microscopes) to the

magic angle.

The magic angle θM is defined for materials with a “c-axis” by the equality of two

functions of collection angle αc:

F (αc) ≡
∫ αc

0
dθθ

θ2

[θ2 + θ2
E/γ

4]
2 , (4.33)

and

G(αc) ≡ 2
θ2
E

γ4

∫ αc

0
dθθ

1

[θ2 + θ2
E/γ

4]
2 . (4.34)

where γ = (1 − v2
0/c

2)−1/2, θE is the so-called “characteristic angle” given in terms of the

energy-loss ω, the initial probe speed v0, and kIθE = ω/v0. Both of the above integrals

may easily be evaluated in terms of elementary functions, but we leave them in the above-

form for comparison with the theory of the Section 4.4. Eqs. (4.33) and (4.34) both make
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use of the approximation sin(θ) ≈ θ. Since typical scattering angles are on the order of

milli-radians this small angle approximation is highly accurate.

The expressions for F (αc) and G(αc) are easily derived within the framework of the

Schattschneider “vacuum theory”[92] and result in a ratio of magic angle to characteristic

angle which is independent of the material which makes up the sample. The factors of

(1 − v2
0/c

2) which appear in Eqs. (4.33) and (4.34) come from including the transverse

effects (as in Section 4.2) and thus the non-relativistic (c → ∞) result for the ratio of

magic angle to characteristic angle is independent of transverse effects. The “transverse”

correction to the magic angle is on the order of 100 percent. This corrected theoretical

magic angle is in much better agreement with the experimentally observed magic angle,

although the experimentally observed magic angle seems be somewhat larger (on the order

of 30 percent) and sample dependent.[14] These further discrepancies between theory and

experiment are addressed in Section 4.4.

4.4 Macroscopic Electrodynamic Effects

As discussed above, the result of Schattschneider et al. is nearly in agreement with that

obtained in Section 4.3 of this Chapter in the vacuum relativistic limit. However, because

of the residual discrepancy between these results and experiment we now consider how

macroscopic electrodynamic effects can be incorported into the quantum mechanical single-

particle formalism. We find that the corrections to the magic angle which result can be

quite substantial at low energy-loss. However, we are unaware of any experimental data

in this regime with which to compare the theory. Nevertheless, the inclusion of dielectric

response introduces a sample dependence of the theoretical magic angle which is consistent

with the sign of the observed discrepancy.

Certain condensed matter effects are already present in the existing formalism via the

behavior of the initial and final single-particle states in the sample, and in many-electron

effects which are neglected in the independent electron theory. However, the macroscopic

response of the sample can be taken into account straightforwardly within a dielectric for-

malism. This procedure is similar to the well-known “matching” procedure between atomic

calculations and macroscopic-dielectric calculations of the stopping power.[29, 13, 24] That
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is, the fast probe may interact with many atoms at once, as long the condition v0 >> ω0a

(where ω0 is a typical electronic frequency and a a typical length scale) is fulfilled. Un-

der these conditions the sample can be treated using the electrodynamics of continuous

media.[29]

Effects due to the macroscopic response of the system can be included within a formalism

that parallels that of Schattschneider et al. simply by choosing the “generalized Lorentz

gauge”[29] for a given dielectric function ε(ω), instead of the Lorentz gauge of the vacuum-

relativistic theory. In the generalized Lorentz gauge, most of the formal manipulations of

Schattschneider et al. carry through in the same way, except that instead of Eq. (4.19) we

end up with

M =
4πe2

ε(ω)V

1

q2 − ε(ω)ω2/c2
×

〈f | eiq·r
[

1 − ε(ω)v0

mc2
· (p +

q

2
)

]

|i〉 . (4.35)

The factors of ε in Eq. (4.35) can be understood physically as due to the fact that c→ c/
√
ε

in the medium, and also to the fact that the sample responds to the electric field E rather

than the electric displacement D. Eq. (4.35) is derived in the following subsection.

4.4.1 Generalized Lorentz Gauge calculation

We consider a probe electron which passes through a continuous medium characterized by a

macroscopic frequency-dependent dielectric constant ε(ω) and magnetic permeability µ = 1.

It is appropriate to ignore the spatial dispersion of the dielectric constant at this level of

approximation.[96] Then Maxwell’s equations are

∇ · D = 4πρext, (4.36)

with D = εE. And

∇× B =
4πjext

c
+

1

c

∂D

∂t
, (4.37)

where the charge/current densities ρext and jext refer only to the “external” charge and

current for a probe electron shooting through the material at velocity v0. The other two
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Maxwell equations refer only to E and B, and can be satisfied exactly using the definitions

E = −∇φ− 1

c

∂A

∂t
, (4.38)

and

B = ∇× A . (4.39)

We next insert Eqs. (4.38) and (4.39) into Eqs. (4.36) and (4.37) and choose the generalized

Lorentz gauge [29]

∇ · A +
1

c

∂

∂t

∫

dt′ ε(t− t′)φ(t′) = 0 . (4.40)

This gauge choice leads to the momentum space (q,ω) equations
[

−q2 + ε(ω)
ω2

c2

]

φ(q, ω) = 4π
ρext(q, ω)

ε(ω)
, (4.41)

and
[

−q2 + ε(ω)
ω2

c2

]

A(q, ω) = 4π
jext(q, ω)

c
. (4.42)

We now write ρext(q, ω) = (−2πe)δ(ω− q ·v0) and jext = v0ρext to find explicit expressions

for φ and A:

ε(ω)φ(q, ω) =
4π(−2πe)δ(ω − q · v0)

[ε(ω)ω2/c2] − q2
, (4.43)

and

A(q, ω) =
v0

c
ε(ω)φ(q, ω) . (4.44)

Then, proceeding roughly in analogy with Schattschneider et al., we have

H = H0 +
e

2mc
(p · A + A · p) − eφ+O(A2)

= H0 +
e

2mc
(2A · p − i∇ · A) − eφ+O(A2). (4.45)

Next, evaluating the perturbation U ≡ H −H0 with A = (v0/c)ε(ω)φ, we find

U =
e

mc

(

φ
ε(ω)

c
v0 · p − iε

v0

2c
· ∇φ

)

− eφ . (4.46)

In calculating the matrix element of U it is appropriate to replace ∇φ by iqφ for the case

when the final states are on the left in the matrix element. Thus

M ≡ 〈f | 〈kf |U |ki〉 |i〉 = −eφ(q, ω)

× 〈f | eiq·r
[

1 − ε(ω)

mc2
v0 · (p + q/2)

]

|i〉 . (4.47)
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Alternatively, since

φ(q, ω) =
−4πe

ε(ω) (q2 − ω2ε(ω)/c)
, (4.48)

we have

M =
4πe2

ε(ω)(q2 − ε(ω)ω2/c2)
〈f | eiq·r

×
[

1 − ε(ω)

mc2
v0 · (p + q/2)

]

|i〉 . (4.49)

In the dipole approximation Eq. (4.49) reduces to

4πe2

ε(ω)V

1

q2 − ε(ω)ω2/c2
〈f | i

[

q − ε(ω)
v0(q · v0)

c2

]

· r |i〉 , (4.50)

where ε(ω) is the generally complex valued macroscopic dielectric constant as which can be

calculated, for example, by the FEFFOP [97] code. Consequently we find that that instead

of the longitudinal q-vector replacement

qz → qz(1 − β2) (4.51)

found by Jouffrey et al. and Schattschneider et al., we obtain the replacement

qz → qz[1 − ε(ω)β2], (4.52)

which is appropriate for an electron traversing a continuous dielectric medium. In the same

way that Eq. (4.51) can be understood classically as being due to a charge in uniform motion

in vacuum,[7] Eq. (4.52) can be understood as due to a charge is in uniform motion in a

medium. Because the motion is uniform, the time dependence can be eliminated in favor of

a spacial derivative opposite to the direction of motion and multiplied by the speed of the

particle. For motion in the z-direction

∂

∂t
→ −v0

∂

∂z
(4.53)

Therefore, if we consider the electric field

E = −∇φ− 1

c

∂A

∂t
→ −∇φ+

v0
c

∂A

∂z
, (4.54)
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Eq. (4.51) follows from the substitution Az = (v0/c)φ, whereas Eq. (4.52) follows by making

the correct substitution in the presence of a medium

Az =
v0
c
εφ , (4.55)

which in Fourier space gives

E(q, ω) =

[

−iq + ẑ
ε(ω)v2

0

c2
iqz

]

φ(q, ω) , (4.56)

which is equivalent to Eq. (4.52).

Because Eq. (4.52) depends on the macroscopic dielectric function the ratio θM/θE ,

which formerly was a function only of v0, will now show material dependence. This is seen

from the generalization of Eqs. (4.33) and (4.34), the equality of which gives the magic

angle. Instead of Eq. (4.33) for F (αc) we now have

F (αc) ≡
∫ αc

0
dθθ

θ2

|θ2 + θ2
Eg|

2 , (4.57)

and, instead of Eq. (4.34) we now have

G(αc) ≡ 2θ2
E|g|2

∫ αc

0
dθθ

1

|θ2 + θ2
Eg|

2 , (4.58)

where

g = 1 − ε(ω)v2
0/c

2 (4.59)

is a complex number which replaces 1/γ2 in the vacuum relativistic theory.

If one can calculate the macroscopic dielectric function of the sample by some means [97]

then the material dependent magic angle can be determined theoretically and compared to

experiment. Furthermore, the correction to the magic angle given by the introduction of

the macroscopic dielectric constant relative to the relativistic macroscopic “vacuum value”

of Jouffrey et al. is seen to be typically positive (since Re[ε]
<∼ 1 and 0

<∼ Im [ε]), in rough

agreement with observation.[14] In fact, it turns out that the correction is always positive

for the materials we consider and is substantial only for low energy-loss where the dielectric

function differs substantially from its vacuum value. For modern EELS experiments which

use relativistic microscope energies and examine low energy-loss regions, the effect of the

dielectric correction on the magic angle should be large.
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Example calculations using our relativistic dielectric theory compared to both the rela-

tivistic vacuum theory of Schattschneider et al. and to the non-relativistic vacuum theory

are shown in Fig. (4.3) for the materials boron nitride and graphite. The data of Daniels

et al. [14] is also shown in the figures. We have not attempted to estimate the true error

bars for the data; the error bars in the figure indicate only the error resulting from the

unspecified finite convergence angle.

4.5 Conclusions

We have developed a fully relativistic theory of the magic angle in electron energy loss

spectra starting from the QED Hamiltonian of the many body system. As with the single-

particle theory of Jouffrey et al. and Schattschneider et al. we find a factor of two “trans-

verse” correction to the non-relativistic ratio θM/θE. We have also shown how macroscopic

electrodynamic effects can be incorporated into the relativistic single-particle formalism of

Schattschneider et al. In particular we predict that these dielectric effects can be important

for determining the correct material-dependent magic angle at low energy-loss, where the

difference between the dielectric function relative to its vacuum value is observed to be

substantial.

Several other factors may be important for correctly describing the energy loss depen-

dence of the magic angle in anisotropic materials. In particular, we believe that further

study of the many body effects (beyond a simple macroscopic dielectric model) via explicit

calculations of the microscopic dielectric function and including time-dependant density

functional/Bethe-Salpeter theory TDDFT/BSE[98] are an important next step in the de-

scription of all EELS phenomena, including the magic angle.
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Figure 4.3: The magic angle to characteristic angle ratio θM/θE is compared for three
differing theories and one experiment.[14] The materials considered in the figure are boron
nitride (top figure) and graphite (bottom). The microscope voltage is fixed at 195 keV. Both
the non-relativistic and relativistic vacuum theories show no dependence on the energy-loss
and no dependence on the material. The relativistic dielectric theory shows that the magic
angle should deviate from the vacuum value by a significant amount in regions where the
macroscopic dielectric response is substantial.
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4.6 Relativistic Effects

Starting from Eq. (4.7) we write (the notation H0 in this Section differs from that in the

main body of the text):

H0 = cα · p + βmc2 + ve-core(r)

+

N
∑

i=1

[

cα(i) · p(i) + β(i)mc2 + ve-core(r
(i))
]

+
1

2

N
∑

1=i6=j=1

e2

|r(i) − r(j)| +Hrad, (4.60)

and

U = eα · A(r) +
N
∑

i=1

e2

|r − r(i)| +
N
∑

i=1

eα(i) · A(ri) . (4.61)

We are interested in matrix elements of the perturbation

U + UG0U + . . . (4.62)

between eigenstates of the unperturbed Hamiltonian

|I〉 = |ki〉 |Ψi〉 |0〉 and |F 〉 = |kf 〉 |Ψf 〉 |0〉 . (4.63)

The difference between the many-body case and the single-particle theory of the sample is

that the wavefunction of the sample now depends on N electron coordinates, instead of one

effective coordinate. Also we see that the only potential “seen” by the probe (i.e., included

in the unperturbed probe Hamiltonian) is the ve-core potential. This is to be contrasted

with the “unperturbed” sample Hamiltonian which includes not only the ve-core but also the

Coulomb interactions between all the sample electrons.

Consequently, working with a unit volume and proceeding exactly as in the single-particle

case, we find a “longitudinal” contribution to the matrix element

ML =
4πe2

q2
u†(kf )u(ki) 〈Ψf |

N
∑

i=1

eiq·r
(i) |Ψi〉 , (4.64)

and a “transverse” contribution

MT =
4πe2

ω2/c2 − q2
u†(kf )αTu(ki) · 〈Ψf |

N
∑

i=1

α(i)eiq·r
(i) |Ψi〉 , (4.65)
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where

αT = α − q
q · α
q2

, (4.66)

and where the u(p) are the usual free-particle Dirac spinors, normalized such that

u†(p)u(p) = 1 . (4.67)

The two matrix elements ML and MT are to be summed and then squared, but before

proceeding with this plan we make the following useful definitions: The transverse Kronecker

delta function (transverse to momentum-transfer)

δij
T = δij − qiqj

q2
; (4.68)

the (Fourier transformed) density operator

n(q) =

N
∑

i

e−iq·r(i)
; (4.69)

and the (Fourier transformed) current operator

j(q) =

N
∑

i

cα(i)e−iq·r(i)
. (4.70)

Next, we recall some properies of the Dirac spinors u(p) and of Dirac matrices which we

will presently find useful: i) There are four independent spinors
{

u(1), u(2), u(3), u(4)
}

, the

first two of which will refer to positive energy solutions, and the second two of which will

refer to negative energy solutions (and are not used in this calculation);

ii) the positive energy spinors satisfy a “spin sum”

2
∑

s=1

u(s)(p)u(s)†(p) =
1

2E(p)

(

E(p) + cα · p + βmc2
)

≡ 1

2E(p)
(E(p) + hD(p)) , (4.71)

where E(p) =
√

p2c2 +m2c4;

iii) the Dirac matrices satisfy the trace identities

Tr(αiαj) = 4δij , (4.72)

Tr(αiαjαkαl) = 4 (δijδkl − δikδjl + δilδjk) , (4.73)

Tr(αi
T αj) = Tr(αi

T α
j
T ) = 4δij

T , (4.74)

Tr(αiα
j
T αkαl

T ) = 4
(

δij
T δ

kl
T − δikδjl

T + δil
T δ

jk
T

)

; (4.75)
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iv) Finally, we note that in this calculation there are many simplifications due to the fact

that ω << mc2 < E(kI) ≈ E(kF ). For example,

1

2EiEj
(EiEj +m2c4 + c2ki · kj) =

1 − ω

E(ki)
+O(

ω2

E(ki)2
) ≈ 1 ;

throughout the calculation we ignore terms of order ω/E(pI) Using these identities it is

easy to see that

1

2

2
∑

si=1

2
∑

sf=1

|ML|2 =

(

4πe2

q2

)2

| 〈ΨF |n†q |ΨI〉 |
2

(4.76)

which has the same form as in the non-relativistic case (up to order ω/Ei); the squared

matrix element is much simplified by the sum over final probe-spin and average over initial

probe-spin. Of course, the matrix element itself is completely general in terms of probe-spin,

but many simplification arise from ignoring the probe-spin and exploiting the spin-sums.

Continuing on to the transverse matrix element–and including a few more of the details

(a, b, c, and d are Dirac indices)–we find

1

2

2
∑

si=1

2
∑

sf=1

|MT |2 =
1

2

2
∑

si=1

2
∑

sf=1

(

4πe2

ω2/c2 − q2

)2

×u(kf )
(sf )
a

∗
αm

T
abu(ki)

(si)
b u(ki)

(si)
c

∗
αn

T
cdu(kf )

(sf )
d

×〈ΨF | jm(q)† |ΨI〉 〈ΨI | jn(q) |ΨF 〉

=

(

4πe2

ω2/c2 − q2

)2

〈ΨF | jm(q)† |ΨI〉 〈ΨI | jn(q) |ΨF 〉

×Tr ((E(kf ) + hD(kf ))αm
T (E(ki) + hD(ki))α

n
T )

=

(

4πe2

ω2/c2 − q2

)2∣
∣

∣

∣

〈ΨI |
vT · j(q)

c2
|ΨF 〉

∣

∣

∣

∣

2

. (4.77)

For the cross term we find

1

2

2
∑

si=1

2
∑

sf=1

MLM
∗
T =

(

4πe2
)2 1

q2(ω2/c2 − q2)

×〈ΨF |n†(q) |ΨI〉 〈ΨI |
j(q) · vT

c2
|ΨF 〉 . (4.78)
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Thus we have finally derived an expression for the relativistic many-body summed-then-

squared matrix elements summed and averaged over spins,

1

2

∑

si

∑

sf

|ML +MT |2 =

(

4πe2

V

)2

×
∣

∣

∣

∣

〈ΨI |n(q) |ΨF 〉
q2

+
〈ΨI |vT · j(q) |ΨF 〉

ω2 − q2c2

∣

∣

∣

∣

2

(4.79)

=

[

4πe2

V (ω2/c2 − q2)

]2∣
∣

∣

∣

〈ΨI |n(q) − v0 · j(q)

c2
|ΨF 〉

∣

∣

∣

∣

2

.

The last equality follows from

q · 〈ΨI | j(q) |ΨF 〉 = ω 〈ΨI |n(q) |ΨF 〉 , (4.80)

which itself follows by considering the commutator analogous to that of Eq. (4.21).

The final line of Eq. (4.79) is quite pleasing since we have found that if we can “ignore”

the spin of the probe particle, we may as well have started by taking matrix elements

between electronic states only of the much simpler interaction Hamiltonian

U ′ =

∫

d3x

[

n(x)φω(x − xp) −
j(x) · Aω(x − xp)

c2

]

, (4.81)

where the fields {φω,Aω} are just the e−iωt components of the classical field of a point

charge of velocity v0 in the Lorentz gauge, and where

n(x) =
N
∑

i

δ(x − x(i)) , (4.82)

and

j(x) =

N
∑

i

cα(i)δ(x − x(i)) . (4.83)

That is, if we take Eq. (4.81) as our starting point and proceed in the usual way, we will

find that our squared matrix elements are exactly the same as what we know to be correct

from Eq. (4.79). The photons have dropped out entirely!
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Chapter 5

MIXED DYNAMIC FORM FACTOR

5.1 Main Idea of Chapter

We present real-space multiple-scattering calculations of the mixed dynamic form factor

(MDFF) which is the imaginary part of the retarded density-density correlation function.

Our calculations are based on an extension of the x-ray scattering code FEFFq[23] and the

x-ray absorption code FEFF[1]. The MDFF of a given system contains all the available

system information within the framework of linear response. For example, the information

contained in the MDFF is equivalent to that contained in the complex inhomogeneous space

and time dependent dielectric function. Knowledge of the MDFF is important for the correct

description of scattering experiements regardless of the nature of the probe particle, but here

we concentrate in particular on electron scattering. The numerical calculations presented

here are quite time-consuming which may explain the paucity of other MDFF calculations

in the literature. To our knowledge these are the first calculations of the MDFF which are

based on real-space multiple scattering methods.

5.2 Introduction

For the purpose of describing scattering experiments (this applies equally well to electrons,

photons, or neutrons) one is often interested in computing matrix elements between unper-

turbed states of some perturbation operator V . In many cases of interest the unperturbed

states can be factorized into a “probe” part and a “sample” part. Typically, the treatment

of the probe is easy, but the treatment of the sample (even in a single-particle approxima-

tion) is difficult. In this Chapter we consider a quantity known as the mixed dynamic form

factor (MDFF) which must be used to describe the sample in the most general kinds of

scattering experiments. The MDFF is the main topic of this Chapter and it is defined in

Section (5.3).
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Throughout this Chapter we work within the independent-particle approximation and

we choose units such that h̄ = e = m = 1 where h̄ is the reduced Planck constant, e is the

charge of the proton, and m is the mass of the electron. With these conventions the unit

of energy is the Hartree (≈ 27.2 electron Volts) and the unit of length is the Bohr (≈ 0.529

Angstroms).

For orientation, and also to introduce the role of form factors in scattering, we first

consider the scattering of a plane-wave probe electron (i.e., the probe is described before

and after the scattering by a single plane-wave) off of a sample electron with momentum-

transfer q and energy-loss ω;

|ki〉 |SampleI〉 −→ |kf 〉 |SampleF 〉

where ki = kf + q and the energy-gain of the sample is ω; for the case of electrons we may

also write k2
i /2 = k2

f/2 + ω.

Because the interaction operator V depends only on the difference in positions of the

sample and probe, it is well known[99] that the double differential cross section (DDCS)

factors into a simple or “classical” part (which depends on the probe and interaction) and

a difficult or “quantum” part (which depends on the sample). The DDCS can be written

as
dσ

dΩdω
=

(

dσ

dΩ

)

Cl

S(q,q;ω) (5.1)

where we have introduced the notation dσ/dΩCl to describe the part of the DDCS which

depends only on the probe and the interaction; for fast electrons, where kf/ki ≈ 1 we see

from Eq. (2.91) that dσ/dΩCl = 4/q4. We have also introduced the notation S(q,q′;ω) for

the MDFF which describes the sample.

Only the diagonal part of the MDFF, known as the dynamic form factor (DFF), ap-

pears in Eq. (5.1) for the scattering of a single plane-wave. Off-diagonal elements of the

MDFF must be taken into account if the initial or final probe states are coherent superpos-

tions of more than one plane-wave (e.g., Bloch waves). Roughly speaking, for a coherent

superposition of plane-wave initial states

(

|ki + ∆k〉 +
∣

∣ki + ∆k′
〉)

|SampleI〉 −→ |kf 〉 |SampleF 〉 ,
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we find a cross section that depends on both diagonal and off-diagonal elements of the

MDFF:

σ(ki → kf ) ∼ S(q,q;ω) + S(q′,q′;ω) + S(q,q′;ω) + S(q′,q;ω) .

An experiment which involves the scattering of coherent superpositions of electrons and

which thus measures the diagonal and off-diagonal elements of the MDFF has recently been

proposed.[100]

Further motivation for studying the MDFF comes not only from direct applications like

that mentioned above, but also from indirect applications such as the description of Kikuchi

Bands which are observed in electron diffraction experiements. That is, account must be

taken of the fact that the electron within the sample is necessarily a coherent superposition

of plane waves (a Bloch wave). The interference of these Bloch waves can only be taken

into account using the MDFF.

5.3 Theory

The MDFF is defined[101, 102, 94] within the single-particle approximation, and for a fixed

single-electron initial state |i〉 of energy Ei, by

Si(q,q
′;ω) =

∑

f

〈i| eiq·r |f〉 〈f | e−iq′·r |i〉 δ(Ei + ω −Ef ) , (5.2)

where |f〉 is a state of energy Ef and r is the position operator of the electron. When

the quantity defined by Eq. (5.2) is summed over occupied initial states it is equal to the

quantity denoted by “S” in Eq. (5.1). Eq. (5.1) is an approximation for the cross-section

which, amoung other things, is only correct when the speed of light is taken to be infinte;

transverse effects are neglected in this approximation. For all cases considered in this

Chapter that approximation is very good. An account of transverse effects has already

been given in Chapter (4). For the sake of definiteness, therefore, we take Eq. (5.2) as our

definition of the MDFF for a given initial state.

As mentioned in Section (5.2), the vectors q and q′ will be interpreted in the context of

scattering as momentum-transfers and the number ω will be interpreted as energy-loss.

In anticipation of scattering experiments which are tuned for energy-losses near to a

given initial state energy, Eq. (5.2) considers only the contribution of one given initial state
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to the MDFF. The total MDFF is a sum over initial states. Furthermore, we assume that

our given initial-state is an angular momentum eigenstate (labelled by LI = {`I ,mI}), but

that we give up knowledge of the initial-state’s azimuthal angular momentum. That is,

we assume we are scattering off of a given angular momentum “shell” which only specifies

total angular momentum. Thus, we should average Eq. (5.2) over initial azimuthal angular

momenta by letting

SI −→ 1

2`I + 1

∑

mI

SI ≡ S(q,q′;ω) .

This change in notation is used throught the remainder of the Chapter.

The sum over final-states in Eq. (5.2) can be formally evaluated by introducing a single-

particle Green’s function

G(E) =
1

E −H ′ + iδ
.

where H ′ is the effective single-particle Hamiltonian of the final-states, and δ is a positive

infinitesimal. Thus we find

S(q,q′;ω) =
−1

2`I + 1

∑

mI

〈I| eiq·r 1

π

G(EI + ω) −G†(EI + ω)

2i
eiq

′·r |I〉 (5.3)

where the † symbol stands for Hermitian conjugation.

On arriving at Eq. (5.3) we have reduced most of the problem of calculating the MDFF to

the evaluation of a Green’s function. The importance of the Green’s function stems from the

fact that it has an easy physical interpretation. This leads to a physically motivated method

for its calculation known as the real-space multiple-scattering (RSMS) approach[103, 104,

105, 106]. Such a RSMS calculation of the Green’s function can be done using the computer

program FEFF[1, 23], which utilizes this Green’s function in simulations of x-ray absorption

and x-ray scattering spectra.

Along with the Green’s function, we also need matrix elements of the operator eiq·r in

order to compute the MDFF. The calculation of these matrix elements for use in modeling

inelastic x-ray scattering was recently included in an extension of the FEFF code known

as FEFFq[23]. The FEFFq code can be used to obtain diagonal elements of the MDFF

(i.e., the DFF) matrix in momentum-transfer space. The main aim of this Chapter is the
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description of a new code which extends FEFFq beyond the diagonal calculation to the

calculation of all matrix elements of the MDFF.

As described in detail elsewhere[23] the density-matrix

ρ(r, r′;E) ≡ − 1

π
〈r| G(E) −G†(E)

2i

∣

∣r′
〉

= − 1

π
ImG(r, r′;E)

which appears in Eq. (5.3) can be written in an angular momentum basis as

ρ(r, r′;E) =
∑

L,L′

RL(r)ρL,L′(E)RL′(r)

where RL(r) = R`(r)i
`YL(r) and R`(r) is the regular solution to the radial Schrödinger

equation in the presence of the potential centered on the absorbing atom (central-atom

potential). Here we use the symbol L = (`,m) as a double index.

Thus we may write

S(q,q′;ω) =
1

2`I + 1

∑

mI

∑

L,L′

〈I| eiq·r |L〉 ρL,L′(E)
〈

L′
∣

∣ e−iq′·r |I〉 . (5.4)

Here we have written E ≡ EI + ω for simplicity of notation, and 〈r|L〉 = RL(r).

To make use of our angular momentum basis expansion for the density matrix, we next

insert the well-known expansion of the exponential in terms of spherical harmonics

eiq·r =
∑

L

4πi`j`(qr)YL(r̂)Y ∗
L (q̂)

into Eq. (5.4) and we find

S(q,q′;ω) = (4π)
∑

LL′

∑

L1L2

〈`I | j`1(qr) |`〉 (〈`I | j`2(q′r)
∣

∣`′
〉

)
∗
ρL,L′Y ∗

L1
(q̂)YL2(q̂

′)

×
√

(2`1 + 1)(2` + 1)





`1 ` `I

0 0 0





√

(2`2 + 1)(2`′ + 1)





`2 `′ `I

0 0 0





×
∑

mI





`1 ` `I

m1 m −mI









`2 `′ `I

m2 m′ −mI



 , (5.5)

where L1 = (`1,m1), etc are double indices, and where

〈`I | j`′(qr) |`〉 =

∫ ∞

0
dxx2φI(x)j`′(qx)R`(x)i

`
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is the reduced matrix element of the order `′ spherical regular Bessel function. The Wigner-

3J symbols appear as the result integrating products of three spherical harmonics.

For the case of poly-crystaline solids we must average the MDFF over sample orienta-

tions. This procedure reduces the density-matrix to diagonal form in angular momentum

indices ρL,L′ → δL,L′ρ` where ρ` = 1/(2`+1)
∑

m ρ`m,`m. This averaging over sample orien-

tations does not effect the initial-states because of the sum (average) over initial azimuthal

quantum numbers. Thus, in the polycrystaline case, we may write

S(q,q′;ω) =
∑

`

(2`+ 1)ρ`(E)N`(q, q
′, q̂ · q̂′) (5.6)

where

N(q, q′, q̂ · q̂′) =
∑

`′

(2`′ + 1)P`′(q̂ · q̂′)





`′ ` `I

0 0 0





2

〈`I | jl′(qr) |`〉 〈`I | j`′(q′r) |`〉∗ (5.7)

and P` is a Legendre polynomial.

On comparing Eq. (5.7) with Eq. (17) of Ref. ([23]), we see that the main difference

between a calculation of the DFF and a calculation of the MDFF is simply the insertion of

a single Legendre polynomial which depends on the relative angle between q and q’

5.4 Relativistic Central-Atom Example

The FEFF code uses fully relatistic (Dirac) initial states and thus the Green’s function

and the scattering states must be considered as, respectively, matrices and vectors in dirac-

component space and an appropriate total angular momentum basis. In Section II we

considered an orbital angular momentum basis to facilitate the comparison of our results

with previous theories.

In order to be clear about the generalization of RSMS to relativistic systems we present

an explicit MDFF calculation for the relativistic central-atom case. “Central-atom” means

that we consider only the potential located at the obsorbing atom rather than the total

potential. The manipulations involved in obtaining the total poly-crystaline MDFF are

quite similar to the central-atom case.
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The central-atom MDFF, summed over the initial-state azimuthal quantum numbers

mI , is given by:

∑

mI

Sc(q,q
′;ω) =

2k

π

∑

mI

∑

κ,m

〈κI ,mI | eiq·r |κ,m〉 〈κ,m| e−iq′·r |κI ,mI〉 . (5.8)

As in Section II, the exponentials may be expanded using

eiq·r =
∑

`,m

4πi`j`(qr)Y
∗
L (q̂)YL(r̂) . (5.9)

Matrix elements of the operators appearing in Eq. (5.9) can be written in terms of an

integral over the large (P) and small (Q) Dirac components

〈κI | j`(qr) |κ〉 =

∫ ∞

0
(PκI

(r)Pκ(r) +QκI
(r)Qκ(r)) j`(qr)

according to the formula[107]

〈κImI | j`1(qr)YL1 |κm〉 =

√

(2`1 + 1)(2jI + 1)(2j + 1)

4π
(−1)mI+1/2





jI `1 j

1/2 0 −1/2





×





jI `1 j

−mI m1 m



 〈κI | j`1(qr) |κ〉 . (5.10)

Thus we find

∑

mI

Sc(q,q
′;ω) =

2k

π

∑

κ`1m1`2m2

4πi`1−`2 〈κI | j`1(qr) |κ〉 (〈κI | j`2(q′r) |κ〉)
∗
Y ∗

L1
(q̂)YL2(q̂

′)

×





jI `1 j

1/2 0 −1/2









jI `2 j

1/2 0 −1/2





√

(2`1 + 1)(2`2 + 1)

× (2jI + 1)(2j + 1)
∑

m,mI





j jI `1

m −mI m1









j jI `2

m −mI m2



 .(5.11)

Next, we exploit the orthogonality of the Wigner-3J symbols

∑

m,mI





j jI `1

m −mI m1









j jI `2

m −mI m2



 = δL1L2

1

2`1 + 1
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to find

∑

mI

Sc(q,q
′;ω) =

2k

π

∑

κ`1

4π 〈κI | j`1(qr) |κ〉 (〈κI | j`1(q′r) |κ〉)
∗

×





jI `1 j

1/2 0 −1/2





2

(2jI + 1)(2j + 1)
∑

m1

Y ∗
L1(q̂)YL1(q̂′)

=
2k

π

∑

κ

(2j + 1)







(2jI + 1)
∑

`1

(2`1 + 1) 〈κI | j`1(qr) |κ〉

× (〈κI | j`1(q′r) |κ〉)
∗





jI `1 j

1/2 0 −1/2





2

P`1(q̂ · q̂′)











. (5.12)

In the above equation, the quantity within the {. . .} reduces to

|Nκ(q, E)|2 ≡ (2jI + 1)
∑

`1

(2`1 + 1)| 〈κI | j`1(qr) |κ〉 |2




jI `1 j

1/2 0 −1/2





2

for the case of q = q′. This |Nκ(q, E)|2 is seen to be the relativistic equivalent of the

|M`(q, E)|2 quantities defined in Eq. (17) of Soininen et al.[23]

5.5 Case of equal magnitude momentum transfers

For the case of |q| = |q′| we see that the only difference between the MDFF and the DFF

comes from the factor of P`1(q̂ · q̂′) which appears in the sum over reduced matrix elements

in Eq. (5.7).

For the case of K-shell or L1-shell |q| = |q′| scattering, the problem of calculating the

MDFF simplifies a great deal further; given a DFF (i.e., diagonal elements only)

S(q, ω) =
∑

`

S`(q, ω)

which is a sum of angular contributions of the type already available in the output of FEFFq,

the generalization to the MDFF (i.e., all off-diagonal and diagonal elements) is obtained by

the simple replacement

S` → S`P`(q̂ · q̂′) . (5.13)
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For the general case of non-spherically symetric initial states (non K-shell or L1-shell)

the above simplifying trick will not work and one must calculate with Eq. (5.7) directly.

An example calculation for a non-spherically symmetric initial state is shown in Fig. (5.4).

Also shown are the MDFF for K-shell scattering off of copper, K-shell GeCl4, and L1-

shell nickel calculated using the simplified form of Eq. 5.13. These results are shown in

Figs. (5.1,5.2,5.3).

5.6 Results and Discussion.

We have included some figures showing the MDFF for nickel, copper, and GeCl4 evaluated

for equal magnitudes of momentum-transfers and for all angles between momentum trans-

fers. In Figs. (5.1,5.2,5.3) the axis which runs from −1 to 1 is the variable (q̂ · q̂ ′). The

other “horizontal” axis is energy-loss (in eV) and the last axis is the value of the MDFF (in

eV−1).

In Fig. (5.4) we plot in two dimensions for clarity and the third dimension (angle between

q and q’) has been demoted to a graph key label. In Fig. (5.4) the term “old code” refers

to the FEFFq DFF code, and thus should be equivalent to our MDFF calculation when ~q

and ~q′ point in the same direction.

5.7 Conclusions.

We have presented ab initio calculations of the MDFF for a variety of condensed matter

systems.
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Figure 5.1: MDFF for Copper near K-shell energies. The MDFF is plotted versus energy-
loss (in eV) and the cosine of the angle between q and q′.
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Chapter 6

CONCLUSIONS

The work presented in this thesis builds on previous theory that is now nearly 100

years old. The progress that we have been able to make in recent years is, to a large part,

based on the exploitation of modern computing power and recent advances[75, 64] in theory

and efficient theoretical techniques. Using this power we have been able to start from

first principles and calculate theoretical results in agreement with experiment for many

kinds of materials. In particular, this work relies heavily on the availability of ab initio

calculations of optical dielectric response over a broad spectral range. We obtained our

dielectric functions from a generalization[2, 79] of the real-space multiple-scattering Green’s

function code FEFF8[1]. We then used this dielectric function in two different ways. In

Chapter 3 we combined our ab initio dielectric function with a relativistic “optical data”

model[13] in order to obtain relativistic ab initio stopping powers, mean free paths, and

mean excitations energies. In Chapter 4 we utilized our ab initio dielectric function by

modifiying a relativistic theory[108] of the EELS magic angle to include dielectric response

via the generalized Lorenz gauge. This allowed us, since we knew the dielectric response from

the begining, to obtain material-dependent magic angle ratios for high energy transmission

electron microscopes.

In Chapter (3) we presented ab initio calculations, based on a real-space Green’s function

approach implemented in the FEFF8[1] computer program, of relativistic stopping powers

and inelastic mean free paths in real condensed matter systems. Also, we calculated the

“mean excitation energy” log(I) which is a parameter in the relativistic Bethe formula.

This parameter is interesting because it can not be calculated for a solid without recourse

to intensive numerics. This is so because log(I) depends on the details of the response over

a broad spectrum. We have presented calculations for aluminum, silicon, copper, silver, and

gold. We have found that accurate calculations of these parameters depend on the quality of
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the optical loss function −Im(1/ε), but not on the details of extension to finite wavelength.

In order to perform these calculations we used an optical loss function calculated with the

computer program FEFF8[1] as input into our “optical data model”. This method allowed

us to obtain ab initio inelastic parameters in good agreement with experimental data over

a broad range of incident electron energies. For example, our ab initio stopping power

calculation can be extended down to energies on the order of 10 eV, while still maintaining

reasonable agreement with experiment. This lower limit is much better than the limit of

applicability of the Bethe formula. In light of the broad spectral range of applicability of

these calculations, our ab initio approach has the potential to compliment or provide an

alternative to semi-empirical approaches for calculations of IMFP and stopping power of

electrons in condensed matter.

In Chapter (4) we have developed a fully relativistic theory of the EELS magic angle

starting from the QED Hamiltonian of the many body system. We find approximately

a factor-of-two “transverse” correction to the non-relativistic magic angle ratio. We have

shown how the effects of macroscopic electrodynamic response (screening) can be incorpo-

rated into a relativistic independent-particle formalism via the generalized Lorenz gauge.

In particular, we predict that dielectric screening effects are important for determining the

correct, material-dependent, magic angle at low energy-loss. We used our screened theory in

conjunction with ab initio calculations of the dielectric function to calculate the relativistic

and dielectric corrections to the EELS magic angle for boron nitride and graphite.

In Chapter (5), we have presented a number of calculations of the mixed dynamic form

factor. Quantitative calculations of the MDFF are important for a proper description of

a variety of new EELS techniques[109]. Our work on the MDFF was accomplished by

modifying a recent[23] extension of the FEFF8 program which was developed to simulate

NRIXS spectra.

6.0.1 Future Goals

One practical goal for the immediate future, which builds on work presented in this thesis,

is the smooth integration of our codes with the next generation FEFF9 computer code.
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In particular, our calculations of relativistic stopping powers, mean free paths, and mean

excitation energies can be further automated and integrated into the FEFF9 full-spectrum

technology. In addition, the work done in this thesis on the MDFF should also be extended.

Currently, the non-dipole MDFF can only be calculated for equal magnitudes of momentum

transfer q = q′. The dipole MDFF has already[22] been integrated into the FEFF code system

for arbitrary values of q and q′ (trivially, since the transfered momenta “factor out” in the

dipole case) subject, of course, to the condition that q and q ′ are small enough that the

dipole approximation is valid.

Further theoretical work on the DFF is also an important future goal. In particular, the

inclusion of screening should be important in many of the same cases where it is important

for x-ray absorption[110]. We should emphasise that this screening effect should not be

handled in the same way that we screened relativistic electrons in Chapter 4. Rather, in this

case a time-dependent density functional theory (TDDFT) approach is more appropriate.

Formally, one can see how to include screening for the MDFF and the DFF as follows:

The MDFF is closely related to the off-diagonal density response function χ(q,q ′, ω). That

is, given an external field of the form

φq′

ext(r) = ei(q
′·r′−ωt) = e−iωt

∣

∣q′
〉

, (6.1)

then the density response ρ(q, ω) at wavevector1 q is equal to χ(q,q′;ω). We thus write,

χ(q,q′;ω) = 〈q|χ0(ω)
∣

∣q′
SCF

〉

= 〈qSCF|χ0(ω)
∣

∣q′
SCF

〉

− 〈qSCF|χ†
0(ω)K(ω)χ0(ω)

∣

∣q′
SCF

〉

,

(6.2)

where χ0(ω) is the independent particle density response function, and

|qSCF〉 = (1 +Kχ) |q〉 = |q〉 +Kχ0 |qSCF〉 , (6.3)

and the kernal K(ω) relates the induced (screening) field to the density response. This

kernal has well-known[111] approximations within TDDFT.

In order to obtain the DFF we may set q = q′ and take the imaginary part of Eq. (6.2)

to find

S(q, ω) = − 1

π
Im(χ(q,q;ω)) = − 1

π
〈qSCF| Im(χ0(ω)) |qSCF〉 . (6.4)

1recall that q may be different from q
′ in an (spatially) inhomogeneous system.
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Thus the DFF takes the same form as in the independent particle picture, cf. Eq. (5.4), but

with screened (SCF) matrix elements. These screened matrix elements should be calculated

using currently available FEFF technology and used in DFF calculations in place of the

unscreened matrix elements.
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Appendix A

NEW AND MODIFIED COMPUTER CODES

The purpose of this Appendix is to describe in detail the computer codes used in the

numerical calculations presented in this thesis. In order to accomplish the work presented

in this thesis we wrote three programs and modified four FEFFq[23] program modules.

The first two programs we discuss are named lamb.x and tot2.x. These programs

were used to calculate stopping powers and mean free paths via the relativistic formalism

presented in Chapter 3. The program lamb.x calculates both inelastic mean free paths and

stopping powers in the non-relativistic region. The program tot2.x calculates the stopping

power in the relativistic region as well as auxilliary parameters such as the density-effect

correction.

The third program we wrote is named magic.x. This program was used to calculate the

relativistic and dielectric corrections to the EELS magic angle presented in Chapter 4.

A.1 Stopping Power Code: lamb.x and tot2.x

A.1.1 Introduction

These computer programs were written to calculate the inelastic mean free path (IMFP)

and the collision stopping power (CSP) of a relativistic probe electron within a solid.

A.1.2 Input

The input for the code lamb.x is the q = 0 complex dielectric function ε(ω), where ω is

the angular frequency. This input file is a text file consisting of 8 columns of numbers and

it must be named opconsKK.dat. The input text file may have a header of comments.

Comments may only be in the head of the file. Comments are here defined as lines of text

which begin with either #, or !, or c, or *.
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The first column of numbers in the input text file must contain the value of the angular-

frequency in eV; the second column must contain the real part of ε(ω)−1; the third column

must contain the imaginary part of ε(ω); the eighth column must contain the imaginary

part of −1/ε(ω); the other columns of opconsKK.dat are not used by the code lamb.x.

The input for the code tot2.x is also the q = 0 dielectric function given as a text file

named opconsKK.dat in the same format as described above. The code tot2.x also requires

that the user enter the square of the all-electron plasma frequency, and the logarithm of the

numerical value the mean excitation energy in Hartree.

A.1.3 Output

The output of the code lamb.x are the files lamb.dat and lowsp.dat. The file lamb.dat is

a text file containing three columns. The first column gives the energy in units of eV. The

second column is set to zero. The third column gives the value of the inelastic mean free

path in inverse Angstroms.

The output of the code tot2.x is the file sp.dat containing the relativistically correct

stopping power. The file is a two-column text file. The first column gives the energy in eV.

The second column gives the stopping power in eV/Angstroms.

A.1.4 Example Program Usage

Once we have obtained the file opconsKK.dat running the code is very simple. In the

following we assume that the files opconsKK.dat, lamb.x, and tot2.x are all in the same

directory. Change directories to the directory containing our files and then run the codes.

When running tot2.x we will be prompted to enter the plasma frequency (squared) and

the log of the mean excitation energy. The following example illustrates this for a material

with Ω2
p = 1077 and log(I) = 1.9:

[asorini@botticelli test]$ ls

lamb.x opconsKK.dat tot2.x

[asorini@botticelli test]$ ./lamb.x

[asorini@botticelli test]$ ls
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lamb.dat lamb.x lowsp.dat opconsKK.dat tot2.x

[asorini@botticelli test]$ ../tot2.x

enter omega_p**2.

further info in putit.f code

1077

enter lni

1.9

making F(L) from opconsKK.dat...

FL.dat created.

making delta_f from opconsKK.dat and FL.dat...

deltafF.dat created.

making sp.dat...

done.

[asorini@botticelli test]$ ls

lamb.dat lamb.x lowsp.dat opconsKK.dat sp.dat tot2.x

A.2 Magic Angle Code: magic.x

A.2.1 Introduction

This computer program was written in order to calculate the relativistically correct EELS

magic angle for a material, specified by its dielectric function. The EELS magic angle

also depends on the transmission electron microscope’s operating voltage (incident electron

energy).

A.2.2 Input

The input for the code magic.x is the q = 0 complex dielectric function ε(ω). The dielectric

function must be contained in a file named opconsKK.dat. The form of this input file is

exactly as specified in the previous Section.
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A.2.3 Output

The output of the code magic.x is the file magic.dat. The output file is a plain text file

consisting of a header followed by three columns of data. Column one gives the energy-

loss in eV; column two gives the value of the relativistically correct EELS magic angle θM ;

column three gives the value of the microscope characteristic angle θE.

A.2.4 Example Program Usage

Once we have the file opconsKK.dat, running the code is very simple. In the following we

assume that the files opconsKK.dat and magic.x are both in the same directory (called

test2 in the following). In this example we take the TEM voltage to be 100 keV:

[asorini@botticelli test2]$ ls

magic.x opconsKK.dat

[asorini@botticelli test2]$ ./magic.x

Enter microscope voltage in eV:

100000

100000.000000000

reading opconsKK.dat ...

calculating ...

... done!

[asorini@botticelli test2]$ ls

magic.dat magic.x opconsKK.dat

A.3 Modified Subroutines of FEFFq

The MDFF calculations presented in this thesis are based on modifcations made to the

computer program FEFFq[23]. That program, in turn, is an extension of the computer

program FEFF8[1]. The computer program FEFFq calculates the diagonal elements of the

MDFF. Our extension of FEFFq calculates the off-diagonal elements of the MDFF for equal

magnitudes of momentum transfers q = q ′. In this case, one must specify the angle between
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q and q′

q̂ · q̂′ = cos(θ) .

Within the code this number is refered to as cosleg.

Once this angle has been read in by our modified FEFFq code, the formula given in

Eq. (5.6) can easily be implemented as an extension of the current FEFFq subroutines. More

precisely, we list below the modified subroutines of FEFFq and our modifications:

A.3.1 COMMON: itoken

This subroutine was modified in order to recognize the ADAM card in the feff.inp input file.

This card corresponds to itoken=55 in FEFFq. The value of q̂ · q̂ ′ is given as the argument

of the ADAM card.

A.3.2 RDINP: rdinp

This subroutine was modified by adding token 55 corresponding to the ADAM card in order

to read in the value of q̂ · q̂′ to a variable named cosleg in the code. This is the numerical

value of the cosine of the angle between q and q′. For example, if we want to specify that

q and q′ are perpendicular we would add the line

ADAM 0

to the feff.inp input file. Or, if we wish to reproduce the results of FEFFq (for which q

and q′ are parallel) we would instead specify

ADAM 1

in the feff.inp input file.

A.3.3 RDINP: iniall

The variable cosleg is initalized to (double precision) zero.

A.3.4 RDINP: allinp.h

The variable cosleg is put in the common block qveci.
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A.3.5 RDINP: wrtall

The value of cosleg read from the input file is written to the standard input files for the

modules mod2.inp and mod3.inp.

A.3.6 FMS: ffmod3

This subroutine calls the subroutine reafms and the call to reafms was modified by adding

the variable cosleg.

A.3.7 FMS: reafms

This subroutine was modified to read in the variable cosleg from the standard input file

mod2.inp.

A.3.8 FMS: fmstot

This subroutine was modified by adding a call to cpl0 in order to obtain the Legendre

polynomials P`(cosleg) for ` = 0 to ljmax. ljmax is a variable used in FEFFq to specify

the maximum angular momentum. The P`(cosleg) are stored in the double precision array

pleg(1:ljmax+1). The array pleg was then used to multiply the code variables gtr and

gtrl.

A.3.9 XSPH: rexsph

This subroutine was modified to read in the value of cosleg from the file mod3.inp

A.3.10 XSPH: specupd

This subroutine was modified by adding a call to cpl0 to obtain the appropriate Legendre

polynomials (exactly as in the modifications of FMS). The array pleg was then use to

multiple the code variable aa.

A.3.11 XSPH: specupdatom

This subroutine was modified in the same way as specupd.
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A.3.12 XSPH: specuplg

This subroutine was modified in the same way as specupd.

A.3.13 Input and Output

The input file for our modified version of FEFFq is a standard FEFFq input file, but now

with the ADAM card available for specifying the angle between q and q′. For example, if we

want to calculate the MDFF for q = q′ = 6.0/Bohr and q̂ · q̂′ = −0.42 at the GeCl4 K-edge,

we would use put the text

TITLE GeCl_4 MDFF

ADAM -0.42

QVEC -1 6.0

LJMAX 10

LDEC 2

CONTROL 1 1 1 1 1 1

NOHOLE

HOLE 1 1.0

RSIGMA

SCF 3.0 1

FMS 3.0 1

RPATH 1.0

XANES 8.0 0.05

AFOLP 1.30

POTE

* ipot z label

0 32 Ge 3 3

1 17 Cl 3 3

ATOMS

0.0 0.0 0.0 0 Ge
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1.210 1.210 1.210 1 Cl

1.210 -1.210 -1.210 1 Cl

-1.210 1.210 -1.210 1 Cl

-1.210 -1.210 1.210 1 Cl

END

into the file feff.inp.

The output is contained in the file xmu.dat and the format is the same as for FEFFq

except that the DFF is replaced by the MDFF. I.e., xmu.dat consists of six columns of

data. Column one is the energy-loss, column two is photoelectron energy relative to the

Fermi energy, column three is photoelectron wavenumber relative to the Fermi momentum,

column four is the MDFF, column five is the MDFF atomic background, column six is the

MDFF atomic background times the MDFF fine-structure.
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