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Abstract

Toward Quantitative Calculation and Analysis of X-Ray Absorption Near Edge Spectra

Joshua Kas

Chair of the Supervisory Committee:
Professor John Rehr

Physics

X-ray absorption spectroscopy (XAS) has been used extensively to determine local electronic and

structural properties. While quantitative analysis of extended x-ray absorption fine structure (EX-

AFS) has been available for over two decades, theories of x-ray absorption near edge structure

(XANES) remain qualitative at best. In addition, analysis techniques for EXAFS can be unstable,

and quantitative XANES analysis codes are not widely available. Here we present several devel-

opments in the theory and analysis of x-ray absorption that address these shortcomings. Our goal

is to provide a set of theoretical and analysis tools which enable quantitative analysis of XANES

spectra for a wide variety of materials, with a focus on biological molecules. Bayesian-Turchin

analysis techniques are applied to XANES as well as EXAFS. Theoretical developments include

an efficient many-pole model of inelastic losses, and full potential effects in real space multiple

scattering XANES calculations. These theoretical developments are implemented within the FEFF

multiple scattering code for calculating x-ray absorption and related spectroscopes. The Bayesian

fitting method is implemented by extending the FEFFIT EXAFS analysis code. These developments

significantly improve the theory and analysis of XAS. Our many-pole model agrees well with first

principles calculations of the quasi-particle self-energy, as well as with experimental XANES spec-

tra. Our full potential calculations of the density of states give improved agreement with those of

other electronic structure codes. Our Bayes-Turchin analysis methods are compared with standard

analysis techniques and are shown to stabilize the fitting procedure. Results are presented for a vari-

ety of materials including mono-atomic solids, perovskites, simple molecules, and metalloproteins.
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Chapter 1

INTRODUCTION

In this Chapter we discuss the utility of x-ray absorption spectroscopy (XAS) as a probe of

electronic and atomic structure, and outline the ingredients needed to obtain quantitative structural

information from XAS. We give a statement of purpose, followed by a description of the remaining

chapters of this dissertation.

1.1 XAS and Structural Information

X-ray absorption spectroscopy (XAS) is a powerful probe of local electronic, structural, vibrational,

and magnetic material properties. Because it is a probe of average local structure, XAS complements

x-ray diffraction (XRD) and is useful for aperiodic systems, i.e. systems with long range disorder,

that are locally ordered. In addition to crystals, extended x-ray absorption fine structure (EXAFS)

analysis has been used extensively to study amorphous solids[1], liquids[2], nanoparticles[3], and

biological systems such as metalloproteins[4, 5]. X-ray absorption near edge structure (XANES)

also contains a wealth of electronic information and has been used to determine local symmetry and

charge transfer due to the chemical environment[6]. However, obtaining structure from XAS re-

quires the solution of a complicated inverse problem. Three ingredients are essential to quantitative

solution of this inverse problem. The first is high quality data. The second is a theoretical model

that incorporates the expected physics, and allows quantitative agreement with experiment. Third,

a stable analysis method must be developed in order to reliably extract physical parameters from

XAS.

In the early years of XAS, experimental data was obtained from x-ray tube sources, and was

plagued by noise and systematic errors. It wasn’t until the 1970s that high brilliance synchrotron

radiation began to be used to obtain absorption spectra. Experimental techniques have continued

to develop over the years, and due to the exponential increase in brilliance over time, high quality

XAS data is now routinely collected at a variety of second and third generation synchrotron sources.
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Figure 1.1: Cu K-edge absorption spectrum versus photon energy in eV[8]

A typical experimental absorption spectrum is shown in Fig. 1.1. For a discussion of experimental

techniques used in the collection of XAS data see Ref. [7]. The modern short range order theory of

extended x-ray absorption fine structure (EXAFS) is based on the EXAFS equation, developed by

Stern, Sayers and Lytle in the 1970s[9]. Their interpretation was that EXAFS was due to quantum

interference arising from the back-scattering of the photo-electron from neighboring atoms, and

was therefore sensitive to the short range order in a material. However, their model required the

use of experimental standards to obtain parameters such as the scattering amplitudes and phase

shifts. It wasn’t until the 1990s that high quality theoretical standards became available[10, 11],

and there are now several codes available for calculating EXAFS from first principles[12, 6]. By

contrast, theoretical calculation of XANES spectra have been qualitative at best due to many body

and chemical effects at low energies. In particular, the self-energy and inelastic losses give strong

effects near the edge, and the standard use of the muffin-tin approximation breaks down for low

energy photo-electrons.
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Structural analysis via EXAFS modeling has also been available since the 1970s when the

Fourier transform method was first used[9]. Since that time, theoretical standards have generally

taken the place of experimental standards, and current EXAFS calculations are practically ab ini-

tio. However, conventional analysis techniques have remained the same, mostly based on the least

squares method, which can be unstable for large numbers of parameters. Over the past several years

it has become apparent that an automated scheme for XAS analysis is desirable in many cases. For

example high-throughput structural determination of biological samples such as metalloproteins is

an important step for functional characterization, and XAS studies of biological systems (Bio-XAS)

can provide valuable information in a relatively short period of time. This is due to the recent de-

velopment of automated systems for high throughput collection of Bio-XAS data[13]. However,

current techniques for analysis of XAS data require a large amount of user input and knowledge.

This inhibits high throughput structural characterization through XAS. In addition, biological sam-

ples are easily damaged by x-ray radiation, and it is can be difficult to obtain reliable XAS data over

wide energy ranges. Because XANES spectra have a high signal to noise ratio and are more sensi-

tive to certain structural changes such as bond angles, quantitative analysis of XANES is essential.

Structural determination by XANES analysis is only beginning to be possible[14, 15, 16], and due

to computational and theoretical difficulties, is heretofor far from satisfactory.

1.2 Scope of this Thesis

The goal of this work has been to improve upon standard methods of EXAFS analysis and to aug-

ment theoretical techniques to enable quantitative XANES analysis. Our approach is general, but

slanted toward applications to biological systems such as metalloproteins. In order achieve this goal

we have developed several new algorithms and computer codes for calculating and analyzing both

EXAFS and XANES. We present these developments in Chapters 3, 4, 5 and 6. The theoretical

developments build on the real-space multiple scattering Greens function formalism. They are im-

plemented in the FEFF8 code (FEFF stands for F EFFective, the effective scattering amplitude) for

the calculation of XAS[6]. The analysis code is designed to be an extension of the FEFFIT (FEFF

Fit) analysis package for EXAFS[17].
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1.3 Organization of this Dissertation

In order to provide context, we devote Chapter 2 to an overview of the conventional theory and

analysis of XAS, which are used in the FEFF and FEFFIT programs. Respectively, in Chapter 3

we discuss the problems posed by the standard least squares analysis method and suggest the use

of the Bayes-Turchin method[15, 18] in order to stabilize and automate the fitting procedure. In

addition we present a new code which simultaneously uses FEFF with our extension of the FEFFIT

package, to calculate and analyze both EXAFS and XANES spectra. Results are presented for

several molecules including metalloproteins. In Chapter 4 we present an efficient many-pole model

of the quasi-particle self-energy. The model relies on a fast calculation of the dielectric function

over a wide energy range, which is performed via an extension of the FEFF8 code[19]. We contrast

our many-pole model to other methods for calculating the self-energy[20, 21, 22, 23, 24, 25], and

give a comparison of our results to those of Ref. [25]. In addition, we calculate both the inelastic

mean free path (IMFP) as well as the XANES spectra for several materials and compare directly

with experimental results. Next, in Chapter 5 we extend the many pole model of Chapter 4 to

include broadened poles. This allows for a more accurate description of the dielectric function. In

Chapter 6 we report on the development of an interface between a full potential version of FEFF[26]

and the ORCA electronic structure code[27, 28]. This makes use of a well developed technology

to obtain ground state Kohn-Sham potentials for a given system, and applies multiple scattering

theory to these potentials in order to obtain excited state properties. Results for the density of states

(DOS) are compared to those calculated by ORCA. In addition XANES results are compared to

experiment for several small molecules. Finally Chapter 7 presents a summary of our work, and

conclusory statements.
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Chapter 2

STANDARD THEORY AND ANALYSIS METHODS

In this chapter we give an overview of the standard theory and analysis methods used for x-ray

absorption. We start with a basic description of absorption, followed by a discussion of the standard

analysis procedures used to derive structure. Next, we give an overview of the real space multiple

scattering Greens function method, which is used in the FEFF8 code. Finally, we summarize several

of the approximations made within the FEFF8 code and the effects on the calculated spectra.

2.1 Qualitative description of x-ray absorption

The absorption coefficient µ(ω) describes the attenuation (relative to the incoming intensity) per unit

length of a beam of electromagnetic radiation passing through the material. The outgoing intensity

is given by

I(x,ω) = I0e−µ(ω)x, (2.1)

where I0 is the incoming intensity, and x is the thickness of the sample. Thus for a homogeneous

sample the frequency dependent absorption constant can be found (up to a constant of proportional-

ity) by measuring the incoming and outgoing intensities of the beam,

µ(ω) ∝ ln
[

I
I0

]

. (2.2)

Figure 2.1 shows a simple schematic of a typical experimental setup in transmission mode. Other

methods for measuring absorption are available as well. For example absorption can be measured

in fluorescence mode, i.e. the total fluorescence yield is measured at each frequency instead of the

transmitted intensity. Each radiated photon is created by an electron falling into the core hole which

was left by an absorption event. Thus the total fluorescence yield is approximately proportional to

the absorption.

For x-rays, the energy of the photon is primarily absorbed by core electrons. Due to the quan-

tized nature of light and matter and the fact that the energies of these core electrons are discreet, the
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0Ι 0Ι
−µI = e x

x

Figure 2.1: Schematic of an x-ray absorption measurement in transmission mode.

absorption has a discontinuous theta function like jump called an absorption edge (see Fig. 2.2) near

the binding energy of each core electron. Although most of the absorption spectrum is quite smooth,

oscillatory features called fine structure can be found directly above an edge. This fine structure is

attributed to quantum interference due to back-scattering of the photo-electron off of neighboring

atoms. The fine structure contains a wealth of local structural, vibrational, electronic, and magnetic

information which can be extracted by fitting the data to theoretical calculations. Traditionally, this

fine structure is split into two energy regions. The first, termed x-ray absorption near edge structure

(XANES) occurs in the region from the edge to approximately 40eV above the edge, while the fine

structure at higher energies is called the extended x-ray absorption fine structure (EXAFS). The rea-

son for this division into the XANES and EXAFS regions is that the XANES region is theoretically

difficult to describe, while the EXAFS region is relatively simple to interpret.

Here I give several of the reasons that EXAFS and XANES differ in difficulty of interpretation.

First, at the energies of interest for the EXAFS region, the photo-electrons have a relatively short

inelastic mean free path (IMFP). Thus the EXAFS signal has a convergent expansion in terms of

scattering order (path expansion), and a good approximation of the EXAFS is given by including

only a few important scattering paths in the calculation. In contrast, low energy photo-electrons
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have a long IMFP, thus the path expansion fails to converge. Second, many body effects on XANES

spectra are difficult to calculate, while the effects on the EXAFS are described quite well by simple

models. Third, the muffin-tin approximation, used in most multiple scattering codes that calculate

XANES, is not accurate for low energy photo-electrons which scatter strongly from the interstitial

potential. The scattering of high energy photo-electrons is primarily determined by the atomic core

potentials, thus the muffin-tin approximation is quite accurate for calculations of EXAFS. Finally,

the XANES is sensitive to the treatment of interactions between the photo-electron and the core

hole, while the effects of the core hole on the EXAFS are relatively weak.

For the reasons enumerated above, quantitative analysis of EXAFS has been available since the

1970s and standard techniques have been developed to extract the parameters of interest. Quantita-

tive XANES analysis has only been available for a few years and is not a widely used technique.

2.2 EXAFS: Standard analysis techniques

As mentioned above, the EXAFS signal χ(k) can accurately described by including the signal due

to small number of scattering paths of the photo-electron, i.e.

χ(k) = −k∑
i

S2
0Ni

f e f f
i (k)

R2
i

e−Ri/λ sin (2kRi +2φ(k))e−σ2
i k2/2, (2.3)

where the sum on i is a sum over unique scattering paths of the photo-electron. The independent

variable k is the EXAFS wave number and is related to the frequency by

k2 = 2(ω−Eedge) , (2.4)

where Eedge is the energy at the absorption edge.

The parameters of the model are as follows. First, Ri is the half path length which in the case

of single scattering is equal to the bond length. Next, Ni is the path degeneracy and is related to

coordination number in the case of single scattering. The scattering amplitude
∣

∣

∣
f e f f
i

∣

∣

∣
and phase φi

take a variety of effects into account, including the finite extent of the scattering potentials and the

dependence on scattering angle. The inelastic mean free path λ and many body amplitude reduction

factor S2
0 account for the effects of inelastic losses. Finally, the Debye Waller factor exp

(

−σ2
i k2/2

)

accounts for the effects of vibrational (or static) distortion.
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In practice, some of the parameters in the EXAFS equation are calculated ab initio, while others

are found by fitting the model to experiment. For example, the effective scattering phases and

amplitudes are generally calculated using a multiple scattering code such as FEFF (which stands

for fe f f , the effective scattering amplitude), while a variety of other parameters are used as fitting

variables. Of particular interest are the half path lengths R, and the path degeneracy N since for

single scattering paths, these parameters are directly related to structural properties (i.e. bond length

and coordination number).

The standard analysis procedure for EXAFS was first used in the early 1970s by Stern, Sayers,

and Lytle, who derived the EXAFS equation for the case of single scattering of plane waves[9].

They noted that the terms in the expansion are basically sinusoidal, since the energy dependence

of the other factors is weak. Thus Fourier filtering of the oscillatory EXAFS signal χ(k) proves

extremely useful, since in many simple cases, the signal from the nearest neighbors can be isolated

and fit to a model which includes only a single term from the EXAFS equation.

What follows is a brief description of the standard procedures used for preprocessing of data,

and the extraction of structural parameters by fitting to the EXAFS equation. First the oscillatory

fine structure χ(k) is extracted from the data by subtracting a smooth background function µ0 as

shown in Fig. 2.2. The most prevalent method for obtaining µ0 is to fit the curve to a cubic or other

spline function which is constrained to have low curvature[29, 30]. The oscillatory EXAFS signal

χ(k) is then Fourier transformed to real (R) space which gives an amplitude that is akin to a radial

distribution function, with contributions from longer scattering paths peaking at higher R value.

Fig. 2.3 shows the phase corrected Fourier transformed signal χ(R) for the experimental Cu K-edge

absorption. Phase correction gives a |χ(R)| which is akin to the radial distribution function g(R).

The first four peaks, labeled by R1−R4 in the figure, appear at approximately the first, second, third

and fourth shell distances. In order to obtain more accurate values for the parameters, or to obtain

additional parameters, a model consisting of a few important terms from the EXAFS equation is fit

to the data. Fitting of the model (EXAFS equation) to the data is performed in R space using a

limited range of the Fourier transformed data, in order to isolate the contribution from a relatively

small number of short scattering paths.

Most EXAFS analysis programs use the least squares algorithm for fitting the model to the data.
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That is

X2 =
N

∑
i=1

[

χi −χmodel (x;ωi)

σi

]2

, (2.5)

is minimized with respect to the parameters x = (x1,x2,x3, · · · ), where χi is the ith measurement,

χmodel (x;ωi) is model function evaluated at ωi, and σi characterizes the errors. The values χmodel (x;ωi)

are calculated via the EXAFS equation (Eq. 2.3). In practice, f e f f
i , φi, and λ are calculated while a

number of the other parameters (i.e. Ri, Ni, etc.) may be allowed to vary during fitting. This leaves

a very large number of fitting parameters, and while Fourier filtering mitigates this problem to some

extent, there are many occasions where a subsection of the parameters must be chosen by hand in

order to diminish the size of the parameter space.

2.3 Theoretical Overview

The x-ray absorption coefficient is formally given by Fermi’s golden rule,

µ(ω) ∝ ∑
F

|〈I|∆|F〉|2 δ(EF −EI −ω) (2.6)

where I denotes the ground state and F an excited state of the many body system, and ∆ is the many

body dipole operator. In order to reduce the complexity of the many-body problem, we recast the

problem in terms of single particle ground and excited states, which results in a similar expression.

µ(ω) ∝ ∑
i, f

|〈i|d| f 〉|2 δ(E f −Ei −ω) (2.7)

where i denotes occupied eigenstates of the ground state Hamiltonian H = −(1/2)∇2 +V , and

f denotes eigenstates of an excited state Hamiltonian H ′ = H +Vch + Σ(E) including a core hole

potential Vch and a complex energy dependent quasi-particle self-energy Σ(E). This expression can

be written in terms of a one electron Green’s function defined by

G = [E −H + iΓ]−1 (2.8)

where Γ is an intrinsic broadening due to the finite core hole lifetime. Observing that

Im
[

G(r,r′,E)
]

= −
1
π

ρ(r,r′,E), (2.9)

and

ρ(r,r′,E) = ∑
f

| f 〉〈 f | δ(E f −E) , (2.10)
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we obtain the absorption in terms of the Green’s function.

µ(ω) ∝ ∑
i

Im
[

∑
i

〈i|dG(ω+Ei)d † |i〉
]

θΓ(ω+Ei −EFermi). (2.11)

where θΓ is a broadened step function. Since structural information is most often obtained from the

fine structure associated with a single initial core state, we are interested in the separate terms of the

above sum over i.

Since much of the work presented in this thesis is implemented within the FEFF8 multiple

scattering code, I will now focus on the theory and methods used therein. FEFF calculates absorption

within a real space multiple scattering Green’s function formalism. In order to evaluate Eq. 2.11,

we must calculate (1) the Green’s function; (2) the initial (occupied) orbitals; and (3) the dipole

matrix elements. If we assume that the initial state is a deep core state, which is a good assumption

for excitations caused by x-rays, then the initial state is to a good approximation an atomic state

of a given angular momentum. The dipole matrix elements may also be represented in an angular

momentum basis, and give selection rules for the possible transitions, i.e. ∆l = ±1. The Green’s

function is then calculated using multiple scattering theory. First G (given by Eq. 2.8) is expanded

in terms of the free Green’s function G0.

G(r,r′) = G0(r,r′′)+

Z

d3r′′G0(r,r′′)V (r′′)G0(r
′′,r′)+ · · · (2.12)

If we write the total potential as a sum of potentials vi centered at the atomic sites, we can define the

scattering matrices ti such that

ti = vi + viG0ti, (2.13)

where the coordinates and integrals are left off for the sake of brevity. We then have

G = Gc +Gc ∑
i6=c

tiGc +Gc ∑
i6=c

∑
j 6=c

tiG0t jGc + · · · (2.14)

where Gc = G0 + G0tcG0 is the central atom Green’s function. Gc, G0, and t can then be decom-

posed in a site and angular momentum basis. At this point G can be formed by solving for the

regular(irregular) solutions R(H) of the single site Schrodinger equation

HiR = ER, (2.15)
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where the Hi is the single site Hamiltonian

Hi = −
1
2∇2 + vi, (2.16)

and finding the matrix elements

Gi j
LL′ =

[

Gc +Gc ∑
i6=c

tiGc +Gc ∑
i6=c

∑
j 6=c

tiG0t jGc + · · ·

]

LL′

(2.17)

by truncating the multiple scattering (MS) expansion at a suitable number of consecutive scatterings.

At low energies where scattering is large and inelastic losses are small, the above series fails to

converge. In this case we may evaluate the matrix elements of G by full multiple scattering (FMS),

whence the MS expansion is summed to infinite order by matrix inversion.

GLL′ =
[

(1−G0T )−1 G0

]i j

LL′
, (2.18)

where T i j
LL′ = t i

LL′δi j and the bar in Ḡ0 indicates that the site diagonal components are zero in order

to ensure that consecutive scatterings do not occur at the same site. The details of calculating t i
LL′ ,

and Ḡi
0 LL′ are well known and can be found in Ref. [31]. Of course many approximations go into

the practical applications of multiple scattering theory. In the next section we will discuss a few of

these which pertain to the rest of this thesis.

2.4 Key Approximations used in the FEFF code

Here we give a summary of three of the key approximations made in the FEFF8 code, and their

effects on the spectrum.

The first key approximation used in the FEFF code (and most electronic structure codes) has

to do with the transformation of the N-electron many body problem into a simpler single particle

problem. In FEFF, the local density approximation is used to calculate the ground state density

and potentials, and a complex quasi-particle self-energy correction ∆Σ is included for excited state

properties. In addition, excited state properties are calculated in the presence of a statically screened

core hole, and core hole lifetime effects are included by the addition of a constant broadening Γch. In

this way, both intrinsic and extrinsic broadening are accounted for in some approximation. However,

the model used for the quasi-particle correction, while quite successful for calculations of EXAFS,

is unsatisfactory for near edge calculations. In addition, these models do not account for strong



13

Figure 2.4: 2-D muffin tin potential.

secondary excitations that occur in some systems and are responsible for the many-body amplitude

reduction factor S2
0 which appears in the EXAFS equation.

Second, the FEFF code, as well as most other widely used multiple scattering codes, uses the

muffin tin approximation for the potentials. In this scheme, the potential is assumed to be spherical

about each atom until the muffin tin radius of that atom is reached, at which point the potential

becomes constant. This simplifies the theoretical and numerical problems involved in the imple-

mentation of multiple scattering greatly. This approximation is again quite well suited for EXAFS

where the photo-electron is at high enough energies that scattering is largely due to the potential near

the nucleus where the assumption of spherical symmetry is good. Low energy electrons, however,

are scattered appreciably by the interstitial potential,which in many systems (i.e. small molecules)

is far from constant.

Third, vibrational effects are usually taken into account through the EXAFS Debye-Waller fac-
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tors σ2
i which for simple periodic systems are calculated for each scattering path via the correlated

Debye or Einstein models and give a simple damping of the EXAFS signal. The effects of vibration

are many times less apparent in the XANES region and can be neglected. However, for molecular

systems such as SF6 the effects of symmetry breaking can be quite large. Unfortunately the inclu-

sion of Debye-Waller factors does not break the symmetry of the system. Thus a configurational

average over snapshots of a molecular dynamics simulation are required.

Many other approximations are made in the FEFF8 code, which we do not comment on in this

thesis. Some of these affect near edge calculations. For example the first excitation (edge) energy

is calculated from a free atom model and should be corrected by a chemical shift. In addition, the

interaction of the core hole and photo-electron is approximated via a statically screened core hole

potential (final state rule). For a more detailed description of the approximations used in the FEFF8

code see Ref. [31].
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Chapter 3

BAYES-TURCHIN ANALYSIS OF XAS

In this chapter we compare the least squares analysis of XAS to the Bayes-Turchin method of

Krappe and Rossner [15, 18] which permits inclusion of a priori information to stabilize fits. This

(Bayes-Turchin) method was developed by Turchin et al. in 1970[?] and was first applied to the

analysis of XAS data in 2002 by Krappe and Rossner[18]. In the following, we first discuss the

pitfalls of standard analysis, and how they can be overcome by our proposed method. We then give

details of our implementation which includes EXAFS, XANES and full spectrum analyses. Finally

we give results for the analysis of several systems including small molecules, molecular crystals,

and metalloproteins.

The standard method for analyzing EXAFS is to use non-linear least squares fitting[17, 12, 14,

32, 33, 34]. That is, given absorption data, one minimizes the normalized mean square error

χ2 =
N

∑
i=1

[

µi −µth (x;ωi)

σi

]2
, (3.1)

with respect to the vector of parameters x. In the case of absorption, these parameters include

bond lengths, Debye Waller factors, coordination numbers, etc. Several codes for EXAFS anal-

ysis are available to the public, for example IFEFFIT[17], EXCURVE[32], EXAFSPAK[33], and

GNXAS[12]. Two XANES analysis packages (MXAN[14] and FitIt[34]) have recently become

available as well.

For simple systems, such as mono-atomic cubic crystals and small molecules, and with high

quality data, this procedure is well defined and successful. However, for more complex systems

where the number of parameters is large compared to the information content of the signal this

inversion problem can become ill conditioned. This requires a reduction in the size of the parameter

space which is often difficult to justify. In practice, the Nyquist criterion is used to determine a

bound on the maximum number of parameters allowed in a fit,[35] but this neglects the effects

of noise, which also lead to instabilities in the fitting procedure and require further reduction of
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the number of parameters.[15] In addition, many parameters are highly correlated, leading to large

errors in the fitted parameters. For example, the coordination numbers in EXAFS fits are highly

correlated with the Debye Waller factors, as well as the many body amplitude reduction factor S2
0.

In order to address these problems, we have developed an analysis code as an add on to the

FEFFIT EXAFS analysis package, which uses Bayesian statistics to incorporate a priori information

about the parameters, and thus regularizes the inversion procedure. There are other methods of

regularization, i.e. Wiener filtering[36], but these are generally somewhat ad hoc in nature. The

benefit of using the Bayesian approach is that it naturally includes restraints on the parameters,

based on a priori information, thus overcoming the instabilities caused by the excess of parameters.

In addition, it splits the parameter space into relevant and irrelevant subspaces, allowing only the

relevant parameters to change significantly.

3.1 Standard least squares method

Here we first give a brief overview of the standard least squares method and discuss the instability

caused by noise. Assuming that the theoretical model for the XAS µ0(~x,ω) is a smooth function of

the parameters~x = (x1,x2, · · ·xN) near their true values~x0, one can approximate the model near any

data point ωk as

µ0
k(~x) = µ0

k(~x0)+
N

∑
i=1

∂µ0
k

∂xi
xi, (3.2)

where xi denotes a normalized residual, e.g., xR ≡ (R−R0)/∆R and ∆R is a nominal scaling factor

chosen so that xR is of order unity in fits. Inserting this approximation into the definition of χ2, we

get

χ2 =
∣

∣

∣

~∆−
N

∑
i

~Gixi

∣

∣

∣

2
(3.3)

where

∆k =
µk −µ0

k

∆µk
≡ µ̄k − µ̄0

k . (3.4)

Here µ̄ = µ/∆µ represents the dimensionless XAS, and Gki ≡ ~Gi are the components of the normal-

ized model gradients ~Gi, i.e.,

Gki =
1

∆µk

∂µ0
k

∂xi
. (3.5)
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With these definitions, minimizing χ2 with respect to the parameters xi leads to a set of N linear

equations,
N

∑
j=1

Qi jx j = bi, i = 1 · · ·N, (3.6)

where N is the number of parameters and Qi j are components of the N×N information matrix Q

Qi j = ~Gi · ~G j = GT
ikGk j, (3.7)

and bi are the normalized signal components,

bi =~∆ · ~Gi. (3.8)

Since the dot product is invariant under coordinate rotations, the information matrix does not depend

on the space (e.g., k or R) in which it is evaluated.

To show that these equations are ill conditioned, consider the eigenvalues qα of the symmetric

matrix Q, listed in order of decreasing magnitude. Since Q is directly related to the model gradients,

it is clear that parameters on which the model depends strongly correspond to large eigenvalues,

and conversely, those which have little effect on the model correspond to small eigenvalues. The

conditioning number ZQ is defined as the ratio q1/qN , which can grow large as the number of

parameters is increased. For the applications to XAFS discussed in Ref. [18], ZQ can be up to 1016.

Thus in the eigen-space spanned by the eigen-vectors of the matrix Q, the solutions to the linear

equations are formally given by

xα =
bα

qα
. (3.9)

However, the signal components bα are generally limited by the experimental noise and only include

one factor of the gradients, while the eigenvalues qα involve a product of gradients and can be much

smaller. Thus, as a result of noise, the weak eigen-components are intrinsically unstable. Thus

the standard least squares approach becomes unstable as the number of parameters is increased,

necessitating some form of regularization. Various methods of regularization exist, e.g., Wiener

filtering [36], however, many of these are more or less ad hoc. In the next section we show how the

Bayesian approach naturally regularizes the inversion.
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3.2 Bayes-Turchin Analysis

The Bayes-Turchin approach of Krappe and Rossner[18] addresses the ill-posed nature of the inverse

problem by making use of known or a priori information on the model parameters ~x. Here we will

only summarize the key results, as the original papers provide much more detail. For simplicity we

will assume that the parameters xi have Gaussian distributions, which may be correlated, i.e., they

are characterized by the a priori probability distribution,

Pprior(~x) = Ne−(1/2)χ2
prior, (3.10)

where N is a normalization factor and χ2
prior is a quadratic form

χ2
prior = ∑

i j
Ai jxix j, (3.11)

with a kernel A determined by the inverse of the cross-correlation matrix

A−1
i j = 〈xix j〉. (3.12)

Thus for example, the a priori variance σ2
prior(R) of the coordinate R yields A−1

R,R = σ2
prior(R).

Secondly, as discussed by [37], the method explicitly takes into account theoretical errors by

considering the dependence of the model µ0(~x,~y(~x),ω) on both the model parameters ~x and on the

theoretical parameters e.g., the phase shifts, scattering amplitudes, mean free paths, etc.; these are

denoted by a dimensionless vector ~y = y1,y2, · · · , the components of which may also depend on the

model parameters ~x.

The incorporation of the a priori information is carried out using Bayes theorem for the condi-

tional probability distribution, given the a priori information. This yields the a posteriori probability

distribution for the model parameters x given µ̄,

Ppost(x|µ̄) =
Pprior(x)Pcond(µ̄|x)

R

Pprior(x)Pcond(µ̄|x)dNx
. (3.13)

Here the conditional probability is

Pcond = e−(1/2)χ2
cond , (3.14)

where in tensor notation (i.e., writing Gi j ≡ G),

χ2
cond = xTQx−2bTx+(µ̄− µ̄0)TC(µ̄− µ̄0) (3.15)
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Here the K×K matrix C appears,

C ≈ [1+B−1 +TD−1TT]−1, (3.16)

which characterizes both theoretical as well as experimental errors. In particular B characterizes the

truncation error arising e.g., from a finite cluster size of the model, while D involves errors in the

theoretical parameters (e.g., the phase shifts) and T their gradients, respectively. If the off-diagonal

terms are neglected, the effect of C is to re-normalize the mean-square error ∆k each point k by the

sum of the squares of the experimental, model and truncation errors.

As a result, one obtains an a posteriori distribution given by

Ppost(~x) = e−(1/2)χ2
post , (3.17)

where χ2
post = χ2

prior +χ2
cond is given by the quadratic form,

χ2
post = xAx+ (∆−Gx)T C(∆−Gx). (3.18)

The a posteriori expectation values of the model parameters

〈~x〉 =
Z

~xPpost(~x)d
Nx (3.19)

are obtained by minimizing χ2
post with respect to xi. This yields the regularized linear equations,

N

∑
j=1

[

Q̄i j +Ai j
]

x j = b̄i, i = 1 · · ·N, (3.20)

where the re-normalized information matrix is

Q̄ = GTCG, (3.21)

and the re-normalized signal coefficients are given by

b̄i = ∆C~Gi. (3.22)

Clearly the a priori information in the matrix A regularizes the inversion, since in the eigen-

space of Q+A, the solutions are then always stable. That is, the formal solutions for the model

parameters are

xα =
bα

qα +aα
, (3.23)
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which is well behaved even when qα → 0.

Moreover, it is seen that the a priori information naturally partitions the data into relevant and

irrelevant subspaces, R and P respectively, where

xα = bα/qα, α ε R, (3.24)

xα = bα/aα, α ε P. (3.25)

Thus only the parameters in the relevant subspace are significantly fit by the data, while the param-

eters in the irrelevant subspace do not deviate significantly from their a priori values. An important

finding is that the dimension NR of the relevant subspace R is significantly smaller than that given

by the Nyquist criterion, i.e., NR < Np = (2/π)∆k∆R, since NR takes into account the effects of

experimental noise and systematic error.

These conditions can be satisfied by setting Ann′ = αδn,n′ for an appropriate cutoff α [37]. In

particular two methods for determining α were introduced by Turchin et al. [38]. The first fixes α∗

such that

χ2
cond = Keff, (3.26)

where Keff is the effective number of degrees of freedom, and is given by

Keff = K −TrQ(Q+A)−1. (3.27)

This criterion ensures that the information in the data is not distorted by a priori information. In

the simple case of zero correlation between the effective errors (Cll′ = Cllδll′ ) χ2
cond becomes almost

equivalent to the least squares case, the only difference being that the errors ∆µ l are replaced by an

effective error

(∆µeff
l )2 = (∆µl)

2 +(∆µtheory
l )2. (3.28)

Thus the effect of the Eq. 3.26 can be summarized as follows. When χ2
cond ≈ K, α approaches ∞ so

that the Turchin condition may be upheld. This is the case where none of the parameters are relevant,

i.e. any improvement in the fit given by varying the parameters is statistically insignificant. On the

other hand, if χ2
cond ≈ K −N, α becomes negligible, and the algorithm reduces to the least squares

method. This is the case where all parameters are relevant. In general, the simultaneous solution to

Eqs. 3.26 and 3.20 give final parameters which are the closest to the initial guess parameters with the
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constraint that the difference between χ2
cond and its absolute minimum be statistically insignificant,

i.e. within one standard deviation. A second criterion, for situations when one would like to decrease

the effect of the a priori information gives a value α′∗ < α∗.

In order to illustrate the benefits of the Bayes-Turchin method, we have analyzed the Ge K-edge

EXAFS using our method as well as the least squares method. We have used an excessive number

of parameters to fit the spectrum, including 35 Debye-Waller parameters, 16 half-path lengths, the

Fermi energy E0, and an overall amplitude reduction factor S2
0. The initial values for the Debye

Waller factors were found using a density functional theory (DFT) calculation of the dynamical

matrix which was in turn used to calculate the projected vibrational density of states and the EXAFS

Debye-Waller factors[39]. The uncertainty of the Debye-Waller factors was set to ±0.005Å2, while

that of the path length was ±1% of the path lenth R. Fig. 3.1 shows the resulting Debye-Waller

parameters for this fit versus path number in order of decreasing importance for both fits, along with

the relevance of the parameters as given by the Bayes-Turchin method. Many of the values given by

the least squares method (top) are unphysical, some being much too large, while others are negative.

The Bayes-Turchin method (middle) stabilizes the results. Finally, the relevance of the parameters

(bottom) shows that only a few (≈ 3) parameters significantly affected the value of χ2. The rest of

the parameters were essentially pinned to their a priori values.

3.3 Implementation

We now describe our implementation of the Bayes-Turchin algorithm. We also discuss several

features which are important for analyzing molecular systems. We have implemented the algorithm

as an extension to the FEFFIT EXAFS analysis package[17]. In addition, we have interfaced with

the FEFF8.2 code in order to enable XANES fitting as well as EXAFS fitting. Our analysis code

is capable of running FEFF in parallel for fast calculations. Also, the program utilizes the modular

aspect of the FEFF code in order to optimize for speed, running only those portions of the calculation

that are required for a given change in parameters.

The description of the system for XANES fitting is different from the standard EXAFS path de-

scription. The most important fitting parameters include the atomic positions, which can be specified

in Cartesian or natural coordinates (i.e. bond lengths and angles), the Fermi energy, experimental
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Figure 3.1: Comparison of least squares and Bayes-Turchin methods applied to Ge EXAFS analysis.

The top two graphs show the best fit values of Debye-Waller factors for 35 paths as a function

of path number. Note the difference in scaling of the two plots. The least squares method (top)

is unstable and allows unphysical values for σ2 while the Bayesian method (middle) constrains

irrelevant parameters. The relevance of the parameters as a function of path number is shown at the

bottom. Note that only a few (≈ 3) parameters are relevant in the fit.
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Table 3.1: Key parameters and their a priori and final fitted values and uncertainties for GeCl4.

Parameter a priori value fit value

R 2.00 ±.0.2 2.10 ±.01

E0 -4 ±1 -4.7 ±.2

broadening, an amplitude, and a cubic spline with a user specified number of spline knots, which

corrects for errors in the FEFF calculated atomic background due to scattering at the muffin tin

edge[40].

For XANES, fitting is performed in energy space with the energy range specified by the user.

Full energy range fitting may also be performed, including both the EXAFS and XANES regions.

This is achieved by smoothly interpolating the XANES (FMS) and EXAFS (MS path expansion)

calculations within an energy range where both calculations are valid.

In order to simplify the analysis, we assume that the a priori information matrix is diagonal, i.e.

Ai j = σ2
i δi j. (3.29)

This is equivalent to placing quadratic restraints on the parameters. Unfortunately, this definition

is unsatisfactory since theoretical errors are not well characterized in the XANES region. Thus we

re-normalize χ2
cond to obtain the expected value at the minimum, i.e.

χ2
ren = Ke f f

χ2
cond

χ̄2
cond

(3.30)

where χ̄2
cond is the final value at the minimum. This effectively redefines the errors using the residual

of the best fit and the data. Although this procedure is not strictly statistically valid, it gives a decent

approximation for the relative weight between χ2
cond and χ2

prior assuming that the fit is good.

3.4 Results for a simple case: GeCl4

Here we present results for the simple case of GeCl4, which is a well characterized molecule.
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Figure 3.2: Experimental XAS (solid) and fit (dashes) for GeCl4 for kmax=3.89 Å−1. The experi-

mental near-neighbor distance is 2.113 Å. Also shown is the a priori atomic background µ0 from

FEFF8 (short dashes) and the corrected µ0 from a 3-point spline fit (dots). The model parameters

included in the fit were E0, R, an absolute energy shift, and 3 spline parameters.

Table 3.2: Variation of the fitted near neighbor distance R and error estimate δR vs data range kmax.

The initial guess in all cases was set to R = 2.0 ±.2 Å.

Emax(eV ) kmax (Å−1) R (Å) δR

11120 1.14 2.11 ±.07

11130 1.98 1.92 ±.03

11140 2.57 2.22 ±.06

11150 3.06 2.12 ±.04

11160 3.46 2.16 ±.02

11170 3.81 2.10 ±.01

11180 4.14 2.14 ±.02

11190 4.46 2.13 ±.01

11200 4.70 2.103 ±.008
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3.4.1 GeCl4

Our results for GeCl4 are illustrated in Fig. 3.2 , which shows the result of a fit in k-space of

the XANES of GeCl4 from threshold to k= 3.89 Å−1, i.e., 11013 - 11170 eV. Clearly the fit is

qualitatively satisfactory, and leads to a reduced χ2 of χ2
red ≈ 19, where χ2

red = χ2/(K − 7), and

K−7 is the number of data points minus the number of model parameters, or the number of degrees

of freedom. The experimental error ∆µk at all the data points was taken to be 0.01, based on the

observed fluctuations in the tail of the experimental spectrum. Theoretical errors were not included,

but are typically larger than ∆µk, as discussed by Krappe & Rossner (2002). As seen in Fig. 1,

the theoretical error is quite large near 11120 eV, probably due to the neglect of non-spherical

corrections and many-electron excitations in the theory. This systematic error is likely the primary

source of error in the fit. The a priori and fitted values of the parameters R and the threshold level

E0 are shown in Table 3.1.

An important question to be considered by these preliminary results is how the fitted parameters

vary as the data range is reduced. Remarkably this is found to be reasonably stable, even for very

small data ranges. Results for the near-neighbor distance R with respect to the data range [0,kmax]

for various values of the maximum wave vector kmax are given in Table 3.2. Note that the results for

the fitted distances R tend toward the experimental value 2.113 Å as the k-range is increased while

the errors tend to decrease. The errors in the fit parameters are still not well determined, due to the

lack of a treatment of the theoretical errors, which appear to dominate the fit. The rms errors in

R, obtained from (Q−1
R,R)(1/2), are typically less than about 0.03 Å. However, since our fits did not

include the theoretical error, and χ2
red ∼ 20, these errors are underestimates.

3.5 Application to metalloproteins and related systems

Here we present the results of our analysis of several transition metal complexes. Some are molec-

ular crystals which bear a resemblance to metalloproteins with similar symmetry and neighboring

constituents, while others are themselves metalloproteins. The molecular crystals analyzed here are

very well characterized by XRD, and thus provide a test of the methods of analysis, while being

chemically relevant to the systems of primary interest, namely metalloproteins.
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3.5.1 Analysis of XANES data of Cu(NH3)4SO4H2O

We have analyzed the Cu K edge XANES of the molecular crystal Cu(NH3)4SO4H2O (CTASUL)

using the Bayes-Turchin method. The structure was taken from the crystalographic data[41]. We

chose to use a limited (4Å) cluster to model the crystal. This choice was made for two reasons; (1)

the calculations become time consuming for large clusters; and (2) we expect long range distortion

to be large, diminishing the effects of inter-molecular scattering beyond neighboring molecules.

We then model the errors due to our truncation of the crystal by converging a XANES calculation

with respect to cluster size and comparing to the results from the truncated model as shown in Fig.

3.3. In addition, we investigated the effects of hydrogen on the calculated XANES spectra, hoping

to reduce the complication of the model. Fig. 3.4 shows the effects of including hydrogen in the

calculation. It is clear that the effects are too large to neglect even at energies as large as 40 eV, thus

we include hydrogen in all of our models. Fig. 3.5 shows the results of our fit of the Cu-K

edge XANES spectrum of Cu(NH3)4SO4H2O. We fit three structural parameters corresponding to

the unit cell lengths of the crystal. The other parameters that were fit were the Fermi energy, a static

energy shift of the spectrum, a static broadening parameter, and three cubic spline parameters. We

find that the structural parameters are stable even for energy ranges as small as 50eV. Table XXX

shows the results of the nearest neighbor distance for several values of the energy range ∆E used in

the fit. In addition, we find nearest neighbor distances of 1.99±0.03Å, in good agreement with the

XRD results of 2.031±0.003Å[41].

3.5.2 Analysis of XANES data of Cu(Im)4(NO3)2

We have also analyzed the Cu K-edge XANES spectrum of Cu(Im)4(NO3)2 using the same methods

as with the XANES data of Cu(NH3)4SO4H2O. Again we took the initial structure from crystallo-

graphic data[42]. We again used a relatively small (5.4 Å) cluster for the calculations, and included

all hydrogen atoms. In this case we fit only one structural parameter which was an expansion of

the crystal. In addition, there were three background spline parameters, an energy shift, and a

constant broadening parameter. Fig. 3.6 shows the best fit spectrum (black solid) compared to ex-

periment (circles). Also shown in gray are the theoretical errors. The final expansion parameter was

0.996±0.003, which gives a nearest neighbor bond distance of 1.99±0.04, in good agreement with
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Figure 3.3: Errors in the Cu K-edge XANES spectrum of Cu(NH3)4SO4H2O due to finite cluster

size.
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Figure 3.4: Effect of hydrogen atoms on the calculated XANES spectrum of Cu(NH3)4SO4H2O.
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Figure 3.6: Cu K-edge XANES spectra of Cu(Im)4(NO3)2. Best fit (black) compared to experiment

(dark gray circles). The light gray filled curves denote theoretical errors.
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the value found via XRD, 2.004±0.004[42].

3.5.3 Analysis of XANES data of Pt2(P2O5H2)4 (PtPOP)

We have also analyzed the XANES data of the Pt2(P2O5H2)4 (PtPOP) anion shown in Fig. 3.8. This

is a member of an important class of systems which are involved in electron transfer processes. To

model this complex, we included the atoms in the anion only. We allowed two structural parameters

to vary during the fit. The distance of the atoms from the plane of symmetry along the Pt-Pt axis

as well as the distance from the Pt-Pt axis, were allowed to vary. These distance changes were

constrained to be the same for all atoms except for the on points or lines of symmetry, which were

not moved at all. Thus, the platinum atoms were moved only in the direction along the Pt-Pt axis,

but in opposite directions, while the phosphorus cages were moved parallel to the Pt-Pt axis along

with the Pt atoms, but also radially outward from the Pt-Pt axis. The best fit spectrum is shown in

Fig. 3.7 along with the experimental data[43]. The final Pt-P distance was 2.305± 0.005 which is

in good agreement with previous EXAFS analysis[44] which finds 2.32± 0.04. However, the Pt-

Pt distance obtained from the XANES analysis was long when compared with that of the EXAFS

analysis, giving 2.974 ± 0.001 compared to 2.876 ± 0.028. We are not sure what is causing the

difference here, but we suspect self-energy effects since the self-energy is known to have a strong

effect on the XANES, and is highly correlated with changes in distance.

3.6 First Shell Fits

Calculations of XANES spectra are time consuming for large number of atoms. Because of this we

have investigated the possibility of using only nearest neighbors in our model to obtain properties

of the system such as symmetry and bond length.

We have chosen six systems to test the reliability of using this simplified model. Four are well

characterized molecular crystals containing copper as the absorbing site, and two are metallopro-

teins, one well characterized and one unknown beyond the first shell. The fits were performed in

two different ways. First, raw µ(E) data was used for fitting. Second, a smoothed second derivative

was found, and compared with that of the theory. For both types of fitting, the energy range used in

the fit was varied in order to investigate the stability of the fit parameters. Finally, EXAFS analysis
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Figure 3.8: Molecular structure of Pt2(P2O5H2)4 (PtPOP)
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was performed using ATHENA and ARTEMIS[45] for comparison.

Fig. 3.9 shows the results of fitting for Cu(NH3)4SO4H2O (CTASUL), Cu(Im)4(NO3)2., Cu(SC(NH−C2H5)2)2SO4,

Cu(acac)2, pyrococcus furiosus rubredoxin, and an unknown CoS4 containing peptide.

As can be seen in Fig. 3.9, the parameters obtained by fitting µ(E) directly are systematically

low even for large energy ranges. Fitting a smoothed second derivative gives results which are more

consistent with those obtained from EXAFS analysis.

3.7 Conclusions

In this section we compared the Bayes-Turchin analysis method to the least squares method used

in most EXAFS and XANES analysis. For analysis of complex systems such as metalloproteins

the Bayes-Turchin approach has many advantages compared to conventional least squares fitting

methods. In particular the method avoids the restriction on the size of the model parameter space.

Moreover the method can take advantage of a priori estimates of model parameters, as well as

their uncertainties and correlations, thus improving the significance of fits. Thus the method can

perhaps be automated and has the potential to provide a smart black box XAS analysis tool. Finally,

the method is quite general and can be applied as an add-on to existing XAS analysis techniques

by modifying the χ2 function which is minimized, thus providing a procedure for adding fuzzy

constraints on model parameters. In the remainder of this section we address two question: (1)

How reliable is XANES analysis for molecular systems? and (2) is the Bayes-Turchin method an

improvement over the Least-Squares method?

To answer the first question we have chosen several well characterized systems to analyze. We

find that errors in the XANES region, i.e. ≈ 30eV above threshold are large compared to those in

the EXAFS region, and must be taken into account to obtain reliable results. These errors are largely

due to multielectron excitations and the use of the muffin-tin approximation. For example, we will

see in Chapter 6 that in the case of GeCl4, the errors in the near edge are essentially due to the use

of spherical potentials. In addition, we note that in order to obtain reasonable bond lengths in GeCl4

we have used an ad-hoc method for obtaining the self-energy which employs the Dirac-Hara model

for the real part, while obtaining the imaginary part from the Hedin-Lundqvist plasmon pole mode.

The errors due to full potential have also recently been pointed out by Smolentsev et al. for the
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Figure 3.9: First shell distances obtained from XANES fits for a variety of metalloproteins. Each

plot shows the distances obtained from fits of µ(E) (crosses) and fits of a smoothed second deriva-

tive (open circles) as a function of the energy cutoff EMax of the data range. Also shown are the

values obtained by fitting the EXAFS (solid line). A single shell model was used in the fitting of

an unknown CoS4 bearing peptide, Cu [(SC(NH−C2H5)2)2]SO4, Cu(acac), Cu(NH3)4SO4H2O,

Cu(Im)4(NO3)2, and Pyrococcus Furiosus Rubredoxin.
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more complex case of a metalloprotein[46]. These errors are quite system dependent, thus it is not

easy to obtain estimates of them in an automated way. For example, one might expect that systems

with high symmetry would be reproduced more accurately by the muffin-tin approximation. This

may be the case when the absorbing atoms and the bonding atoms of the two systems are similar,

however we find that FEFF8 gives reasonable agreement with experiment for the PtPOP molecule,

which is not highly symmetric, while GeCl4, which has tetrahedral symmetry, shows large errors

due to non-spherical corrections. Another possible source of errors is vibrational effects. While

these are relatively easy to include in EXAFS analysis via Debye-Waller factors, there is not a

clear method of including them in XANES analysis since this requires a configurational average.

Further investigation of these effects in metalloproteins is therefore warranted. The presence of

large theoretical errors in the near edge requires investigation and improvement of the standard

theoretical methods used in FEFF8.

Although the very near edge requires advancements in theory, a slightly wider energy range

(≈ 150eV) can be used to obtain reasonable estimates of structural parameters. In particular, we

find that bond lengths obtained are within ≈ 0.03Å of those obtained from XRD as well as from

EXAFS analysis, and the angles obtained for the first shell are within 1deg of those obtained from

XRD. Thus XANES analysis is a useful tool for systems which degrade quickly in the x-ray beam.

To obtain this degree of accuracy however, we must have a relatively large amount of a priori

knowledge. For example, we find that the use of a single shell in determining first shell distances

only reproduces those given by EXAFS analysis to within ≈ 0.05Å, and coordination numbers are

systematically underestimated with this simplified model. For example the method often predicts a

trigonal planar geometry instead of the expected tetrahedral or four coordinated planar structures.

We have also found that fitting a smoothed second derivative gives result which are more consistent

with EXAFS results for first shell fits.

The second question has been partially investigated by Krappe and Rossner [18, 47]. They found

that for very well characterized systems, with well characterized errors, the Bayes-Turchin method

was superior to the least squares method for EXAFS since it allowed the automated reduction of the

large parameter space to a smaller relevant one. Here we are interested in more complex systems

where the errors are more difficult to ascertain, and in using the XANES region where theoretical

errors are much larger. In these cases it is less clear that the Bayes-Turchin method will be useful



37

Table 3.3: Variation of the fitted near neighbor distance R and error estimate δR vs data range

∆E . The initial guess in all cases was set to R = 2.035 ±.35 Å. Results are for Cu K-Edge of

Cu(NH3)4SO4H2O.

∆E(eV ) kmax (Å−1) R (Å) δR

50 3.87 2.03 ±.01

75 4.68 2.040 ±.009

100 5.35 1.993 ±.009

EXAFS 2.03 ± 0.01

since it is more sensitive to the details of the error estimate. In light of these problems we chose

to use an ad-hoc renormalization of χ2
cond in order to estimate the effect of unknown errors. Also,

an ad-hoc reduction of the parameter space based on user knowledge may be required for XANES

analysis in order to reduce the compute time.

At this point, we have spent most of our time investigating the use of XANES analysis for

molecular systems and have limited our analyses to include only a few parameters, all of which

were found to be relevant. Thus our investigation of the Bayes-Turchin method is incomplete at this

point. Several things must be done to further investigate the utility of the Bayes-Turchin method.

First EXAFS analysis should be performed on a complex molecular system including all possible

relevant structural parameters within reason. Second, the effects of the error estimates must be

investigated. Third, for XANES analysis, the stability of our results with respect to the background

correction parameters must be investigated. Finally, XANES theory must be improved in order to

obtain reliable results when fitting the near edge. In Chapters 4-6 we discuss several improvements

of XANES theory which we have implemented or are in the process of implementing.
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Chapter 4

THE MANY-POLE SELF-ENERGY

In this chapter we present a many-pole model of inelastic losses. The model is a generalization

of the plasmon pole model of Hedin and Lundqvist,[48, 49] and is based on a real space Green’s

function approach for calculating the inverse dielectric function. We begin by discussing the stan-

dard methods of incorporating inelastic losses in calculations of XAS. We follow with a brief de-

scription of the single plasmon-pole GW model for the self-energy, together with our extension to

many poles. We then describe our approach for calculating the dielectric function at zero momen-

tum transfer, as well as the extrapolation to finite momentum transfer. Next we compare our results

for the self-energy and the IMFP with other calculations, as well as with experimental results for

the IMFP. Subsequently we present our calculation of the quasi-particle spectral function and it’s

relation to the self-energy. We then compare our calculations of XAFS with experimental as well as

theoretical results. Finally, we summarize our results and discuss possible improvements.

4.1 Standard XAS Calculations

Traditional calculations of EXAFS typically rely on simplified or semi-phenomenological models

of inelastic losses in terms of a complex, energy-dependent exchange-correlation potential, i.e., the

quasi-particle self-energy Σ(E), where E is the quasi-particle energy. In addition a many body

amplitude factor S2
0 must be applied to the EXAFS signal to account for intrinsic losses, though this

is frequently ignored or considered to be a free parameter.[50] Two commonly used models for the

self-energy in x-ray absorption spectra (XAS) are i) the Hedin-Lundqvist plasmon-pole model, and

ii) the Dirac-Hara exchange approximation plus a constant complex potential. [51, 31, 52, 53, 54]

Since the self-energy is smoothly varying at high energy and relatively small compared to the kinetic

energy, these approximations are often adequate for EXAFS. However, variations in the self-energy

tend to be large in the XANES region, i.e., within the first 50 eV above the Fermi energy, and neither

of the above models describes this variation correctly. The energy scale mentioned above is set by
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the dominant excitations in the system, and is comparable to the mean plasma frequency ω p, which

is typically about 10-30 eV. Thus the EXAFS (characterized by weak scattering due to large loss)

and XANES (characterized by large scattering and low loss) regions correspond to low and high

energy relative to ωp. As a result, the variation in Σ(E) with energy leads to significant errors both

in amplitude and peak positions in the XANES.

In an effort to improve on these simplified models we present here a many-pole GW approxi-

mation for the self-energy, [55, 56, 57] based on real space multiple-scattering calculations of the

inverse dielectric function for a given system. As shown in the Appendix, the GW approximation

is formally equivalent to that of Quinn and Farrell, [58] which is also the starting point for the for-

mulation of Penn [21]. Our goal is to develop an approach which can be applied routinely both for

EXAFS and XANES. Analogous many-pole models have been used previously in calculations of

the self-energy,[20] and of the inelastic mean free path (IMFP),[21, 22] with experimental optical

data as input. A few first principles approaches that make use of pole approximations have also been

developed.[23, 24, 25] For example Ref. [25] makes use of a band-Lanczos algorithm to calculate a

many-pole approximation to the inverse dielectric matrix. For reviews of other approaches to GW

calculations see Refs. [56] and [59].

Our many-pole model yields semi-quantitative self-energies over a wide range of photo-electron

energies from the near-edge to about 103 eV, which is adequate to cover both the XANES and

EXAFS regions.[60] The approach has a number of advantages for practical calculations. First the

method is computationally efficient in that only a few cpu hours on any modern 2-3 GHz processor

are required to calculate the dielectric function, self-energy, and spectral function for a given system.

This is significant since XANES calculations typically take several cpu-hours, while full GW self-

energy calculations over the complete energy range of XAS experiments are currently impractical.

Finally, the approach is applicable to a wide class of materials including metals, insulators, and

molecular systems.

The strategy of our treatment of inelastic losses is as follows. We begin with a first principles

calculation of the energy loss spectrum L(ω) = −Im[ε(q = 0,ω)−1] in the long wavelength limit

q = 0. [19, 61] Next this loss function is incorporated into a many-pole model for the self-energy

which is an extension of the single plasmon-pole model of Hedin and Lundqvist.[48, 49, 55] This

self-energy yields system dependent extrinsic losses due to the lifetime of the quasi-particle over
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a broad energy range. Next, to account for intrinsic losses, i.e., losses due to excitations of the

system in response to the sudden creation of the core hole, we apply our many-pole model to a

calculation of the quasi-particle spectral function using an extension of the GW approximation based

on the quasi-boson model.[62, 63, 64] This yields corrections to the quasi-particle approximation for

XAS in terms of a convolution of the quasi-particle absorption spectrum with the spectral function.

Moreover, the approach naturally includes interference terms between extrinsic and intrinsic losses

and describes the crossover from the adiabatic- to sudden-approximation limits.

4.2 Many-pole self-energy

The many-pole model for the self-energy developed here is an extension of the plasmon-pole (PP)

model of Hedin and Lundqvist,[48, 49, 55] and contains many of the same ingredients. Thus we

begin with a brief description of the PP model, and subsequently describe the extension to a more

general loss function used in this work. A more detailed description of the plasmon pole model is

given in Appendix A. Throughout this paper all quantities are given in Hartree atomic units (e =

h̄ = me = 1) unless otherwise noted. We begin with the GW approximation for the self-energy[55]

of a homogeneous electron gas in the momentum representation,

Σ(k,E) = i
Z

d3q
(2π)3

dω
2π

V (q)

ε(q,ω)

×
1

E −ω−Ek−q + i(|k−q|− kF)δ
,

(4.1)

where kF is the Fermi momentum. In frequency space the imaginary part of the inverse dielectric

function (i.e., the loss function of the electron gas) is modeled as a single pole at ω(q) = [ω2
p +

aq2 + bq4]1/2, where the coefficients of the dispersion a = k2
F/3 and b = 1/4 are chosen following

the prescriptions of Hedin and Lundqvist.[49, 55] This gives a single-pole model of the inverse

dielectric function where

−Im
[

ε(q,ω)−1] = πω2
p δ[ω2 −ω(q)2], (4.2)

and

Re
[

ε(q,ω)−1] = 1+
ω2

p

ω2 −ω(q)2 . (4.3)
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Inserting these results into Eq. (4.1) then yields two terms: the first term can be integrated analyt-

ically and gives a static Hartree-Fock exchange potential ΣHF which, in the local density approxi-

mation (LDA) is termed Dirac-Hara exchange,

ΣHF(k) = −
kF

π

[

1+
k2

F − k2

2kkF
ln

∣

∣

∣

∣

kF + k
kF − k

∣

∣

∣

∣

]

. (4.4)

The second term, denoted by Σd(k,E;ωp), is the dynamically screened exchange-correlation con-

tribution. This contribution arises from the creation of virtual bosons. The integrals over frequency

and solid angle can be performed analytically[49], leaving an expression for Σd(k,E;ωp) in terms

of a single integral over momentum transfer q. This formulation has been used extensively to

calculate the mean self-energy Σ(E) within the LDA over a broad range of energies for EXAFS

spectra.[31] The PP approximation works well at high energies and more generally for systems with

sharp plasmon-peaks in the inverse dielectric function (e.g., Al), which can be described by nearly

free electron gas models. On the other hand the model often loses accuracy at low energies for

transition metals, insulators and molecules with more complex loss spectra, and in practice often

gives unphysical structure to the self-energy near ωp. [31]

In order to improve on the plasmon-pole approximation, we now introduce a more realistic

representation for the inverse dielectric function, using a sum over discrete poles which conserves

the first and first inverse moments of the loss function. This pole representation also preserves the

analytical character of ε(ω)−1, and corresponds to a distribution of bosonic excitations describing

the dielectric response of a material, including both inter-band and intra-band excitations. The

inclusion of this excitation spectrum in the self-energy naturally broadens the single PP model in a

way which is characteristic of a given system. Moreover, the representation can be systematically

improved.

Two steps must be accomplished in order to extend the PP self-energy to a many-pole self-

energy (MPSE): i) The first step is to obtain a suitable approximation to the energy loss function

L(ω) = −Im[ε(q = 0,ω)−1]. This can be done either by theoretical calculation, as is done here,

or from experimental optical constants. ii) The second step is to extend the q = 0 result to finite

momentum transfer, by representing it as a weighted sum of poles, each of the form Eq. (4.2),

which together conserve the overall strength. In addition we approximate the single particle Green’s

function G(E) as that for a free particle. This is the first term in the multiple-scattering expansion
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Figure 4.1: Energy loss function L(E) = −Im[ε(E)−1] in the long wavelength limit for Cu modeled

either as a single pole (solid vertical line), or as a sum of weighted poles (vertical dashes), compared

to the loss function as calculated by the FEFF8 code (dot dashed).
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and ignores fine structure; hence the calculated self-energy represents a uniform average. With these

conditions the net self-energy is simply the Hartree-Fock exchange contribution plus a dynamically

screened exchange-correlation contribution which is given by a weighted sum of single pole terms,

Σd(k,E) = ∑
i

giΣd(k,E;ωi) (4.5)

with appropriate weights gi and plasma frequencies ωi as described below. As mentioned above,

Σd(k,E) is given by a single integral over momentum transfer |q|, making the calculation quite

efficient. Fig. 4.2 illustrates the self energy from our many pole model for Cu. Note that only 20

poles were needed to converge this calculation, despite the relatively broad loss function of Cu.

4.2.1 Inverse dielectric function

In our approach the inverse dielectric function is calculated using the real-space Green’s function

(RSGF) method as follows: First, a modification to the RSGF code FEFF8[6, 65] is used to calculate

the total absorption cross section σ(ω) for a given material over a broad spectrum, by summing the

contributions from all occupied initial states.[52, 61] The results presented in this paper make use

of atomic initial states. However current developments allow for the description of a continuous

band of initial states within the FEFF real space MS framework,[19] which may further improve

the results. The imaginary part of the dielectric function ε2 is directly related to the total absorption

cross section per atom σ(ω) as calculated by the FEFF code. ε2 = (n/αω)σ(ω) where n is the

atomic number density and α is the fine structure constant. The real part ε1(ω) is then obtained via

a Kramers-Kronig transform, and finally L(ω) = −Im [ε(ω)−1] is formed by inverting ε(ω). This

could be a computationally demanding operation. However, because the self-energy involves an

integral over ε(ω)−1, the fine structure can be neglected in all but the lowest energy part of the

dielectric function (i.e., the first 20 eV), as shown in Fig. 4.2. This approximation considerably

reduces the computational effort. It should be noted that this prescription for the calculation of the

loss function also neglects local field effects due to the off diagonal components of the dielectric

matrix. Nevertheless, the method has been shown to give reasonable agreement with experiment for

a variety of materials.[19, 61] Moreover, neither the self-energy nor the absorption spectrum (i.e.

EXAFS and XANES) are highly sensitive to details of the loss function provided the overall weight

is conserved since these quantities are given by integrals over the loss function.
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4.2.2 Extension to finite momentum transfer

In order to extend the inverse dielectric function to finite momentum transfer q, we represent the

imaginary part of the loss function as a sum of closely-spaced delta functions

L(q,ω) = −Im
[

ε(q,ω)−1] = π∑
i

giω2
i δ

(

ω2 −ωi(q)2). (4.6)

Typically of order 101−102 poles are sufficient. Matching the many-pole model ε(q,ω)−1 evaluated

at zero momentum transfer to the calculation of ε(ω)−1 then gives the weights gi and pole locations

ωi respectively. Our prescription for this match is as follows: First, the loss function is split into N

intervals ∆i chosen such that the integral over each interval is equal. For each interval of, the portion

of the loss function contained within the interval is represented by a single pole. The pole strength

and position are then chosen to preserve first and first-inverse moments of the loss function within

the interval in question, yielding the equations defining gi and ωi

giω2
i = −

2
π

Z

∆i

dωω Im
[

ε(ω)−1] , (4.7)

gi = −
2
π

Z

∆i

dω
ω

Im
[

ε(ω)−1] . (4.8)

This prescription for the positions and weights of the poles is not unique, but our objective is simply

to approximate the integrals involving the loss function using only a few poles, and we find that

this method is both efficient and accurate for that purpose. Note that the positions and strengths

of the poles are only indirectly related to the initial (in this case atomic) or final state density of

states (DOS), since they are chosen only to give a good representation for integrals over the inverse

dielectric function. Note however, that the imaginary part of the dielectric function is more closely

related to the joint DOS, i.e., the convolution of the initial state DOS and the final state DOS. For

simplicity we also use the same plasmon dispersion as in the PP model. This approximation has

been checked against a dispersion relation which maintains the width of the pole at high momentum

transfers and gives similar results for materials with a broad loss function such as Cu, Ag, and

Diamond. For materials with a sharp loss function (i.e. Al, Si, and Na) this approximation may not

be adequate at low energies (below the plasmon energy) where the contribution from the particle

hole continuum can dominate the loss.

Finally, for very low energies (i.e., the first few eV where our multiple-scattering calculations are

least reliable) the calculated loss function must be corrected. For metals a Drude term is added and



46

otherwise a uniform shift of the frequencies {ωi} is carried out while scaling the resultant poles,

so that the inverse moment matches either empirical values or accurate calculations of the static

dielectric constant ε(0), while leaving the first moment unchanged.

For stability we have found it important to preserve the inverse first frequency moment, since this

ensures cancellation of the logarithmic singularity in the derivative of ΣHF at k = kF and E = EF .[48]

This singular behavior otherwise shows up as a sharp rise in Re [Σ(k(E),E)] within the first 10-20

eV above EF . In metals, where cancellation is perfect, Re [Σ(k(E),E)] is fairly flat near E=EF .

In insulators, however, this singular behavior is found to enhance the jump in Re [Σ(k(EF),EF)].

Thus our prescription requires a separate estimate either of the static dielectric function ε(0) for

the case of insulators or the Drude parameters for metals and semi-metals. These quantities have

been used previously to parametrize the dielectric matrix,[66, 67, 68, 69, 23, 70] for example Ref.

[66] uses similar parameters to modify a single pole model of the dielectric function, while Refs.

[67] and [68] generalize to a full dielectric matrix. As emphasized by Shirley [?] the first- and

first-inverse-moments are essential in constructing dielectric response functions.

Our self-energy model is similar to those of Penn[21] and Horsch et al.[20] for the valence

contribution. One difference is that our formulation neglects the relatively small particle hole con-

tinuum contributions below the plasmon onset. Another is that our formulation includes a first order

correction to the quasi-particle energy as well as a renormalization constant Z which accounts for

the quasi-particle spectral weight. Appendix B gives a short discussion of the equivalence of the for-

mulas for the self-energy given by Quinn (which is the starting point for Penn’s calculations) and by

Lunqvist. A further note must be made regarding the difference between our many-pole model and

the LDA implementation in the FEFF8.2 code. The plasmon frequency in the current LDA model

in FEFF8.2 is dependent on the electron density as a function of spacial coordinates. In the model

discussed here, adding spacial dependence greatly complicates the theory and is therefore ignored.

Thus our approach gives the spatially averaged quasi-particle correction for the whole system. We

have found that in the XANES region, the self-energy effects on the spectrum are not sensitive to

the density dependence. Also our calculations use the interstitial density to determine the Fermi

momentum; the interstitial density was chosen, instead of the average density, because we want the

model to capture the behavior of the self-energy due to interaction with the valence electrons. For

the core electrons FEFF8 already has an option to use a non-local Dirac-Fock exchange which can
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be applied with our many-pole model.[71]

4.3 Extrinsic Losses

In this section we present results which characterize the ”extrinsic losses,” in XAS, namely the

self-energy and the inelastic electron mean-free-path. To confirm that our approach gives improved

results when compared to the PP model, we have compared with other calculations of the self

energy, including the single PP model of Hedin and Lundqvist and a more accurate many-pole

approximation.[25, 72] Fig. 4.3 shows our many-pole self-energy for diamond compared with the

single-pole model as well as the band-Lanczos calculation of Refs. [25] and [72]. In addition, we

use our results to calculate the electron inelastic mean free path (IMFP).

λ(E) =

√

E
2

1
|Im[Σ(E)]|

. (4.9)

Note that this definition does not give the EXAFS IMFP λEXAFS,[31] since that quantity charac-

terizes the decay of the EXAFS amplitude and includes both core hole broadening Γ and the self-

energy, λEXAFS = (2E)(1/2)/[|ImΣ(E)]|+Γ/2]. Fig. 4.4 shows our results for the IMFP for Mo, and

for comparison the single-pole model, an optical model which uses the Penn algorithm,[21, 22] and

experiment.[73] Other applications of our many-pole model as well as IMFP results for a number

of materials have recently been presented by Sorini et al. [60] As can be seen in Fig. 4.4, our self-

energy gives improved results compared to experiment as well as other calculations based on optical

data for the IMFP over a broad range of energies.

4.4 Intrinsic Losses

In this section we describe the treatment of intrinsic losses in a system in terms of an effective

quasi-particle “spectral function.” [62] The many-pole GW self-energy developed above is adequate

to describe the extrinsic losses of the photo-electron in the independent particle (i.e., quasi-particle)

approximation for the XAS. However this approximation ignores intrinsic losses due to the excita-

tions in the absorbing medium that arise from the sudden creation of the core-hole. As a consequence

of these excitations, the energy of the absorbing photo-electron is lowered, resulting in a shift in the

absorption signal. Moreover, one must also take into account interference between the intrinsic and
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extrinsic losses. Both intrinsic losses and interference terms can be accounted for in terms of an

energy-dependent spectral function.

Here we implement a many-pole model for the spectral function derived from a direct extension

to the GW approximation and based on a quasi-boson model. [62] Within the approximations

detailed in Ref. [62], the full many-body spectrum is given by a convolution of the single quasi-

particle spectrum with an energy dependent spectral function Aeff(ω,ω′), i.e.,

µ(ω) =

Z

dω′ Aeff(ω,ω′)µqp(ω−ω′). (4.10)

Here Aeff(ω,ω′) characterizes the probability density that a photon excites a photo-electron of energy

ω−ω′, as well as additional excitations (e.g., plasmons, electron-hole pairs, etc.) with energy ω ′.
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Similarly the intrinsic many-body corrections to the EXAFS χ can be represented by a convolu-

tion of the single quasi-particle signal χqp and the normalized effective spectral function Aeff(ω,ω′)

[62]

χ(ω) =

Z

dω′ Aeff(ω,ω′)χqp(ω−ω′). (4.11)

The convolution in Eq. (4.11) leads to a path dependent amplitude reduction in the EXAFS signal

S2
0, j . Since the EXAFS χ can be expressed as a sum of rapidly varying sinusoidal contributions

from each photo-electron scattering path[74] with smooth amplitudes χ j(ω) ∝ exp[2iR jk(ω)], the

amplitude reduction for each path is given by a phasor-summation

S2
0, j(ω) ≈

Z

dω′ Aeff(ω,ω′)e2iR j [k(ω−ω′)−k(ω)], (4.12)

where R j is one half the total scattering path length of the photo-electron. As S2
0, j(ω) is only weakly

energy dependent, this amplitude factor can usually be approximated by a constant over a broad

range of energies, consistent with experimental observation. In contrast the behavior of S2
0, j(ω) for

the single-pole model exhibits much more variation as seen in Fig. 4.5.

The spectral function can be considered to be made up of a quasi-particle peak and satellites.

Since broadening can be added separately, the quasi-particle part can be represented as a delta

function of net magnitude Zeff at zero excitation energy, while the satellites represent contributions

from inelastic excitations in the medium. Within the quasi-boson approximation [62] one has

Aeff(ω,ω′) = N(ω)
[

[1+2a(ω)]δ(ω′)+Asat(ω,ω′)
]

, (4.13)

where N(ω) is a normalization constant which preserves the overall spectral weight at each ω ′. In

our approach the satellite contribution is further broken down into three terms corresponding to the

origin of the inelastic excitation; an extrinsic part Asat
ext coming from excitations created by the photo-

electron, an intrinsic part Asat
intr arising from the excitations created by the sudden appearance of the

core hole, and a term Asat
inter from the interference between them

Asat(ω,ω′) = Asat
ext(ω,ω′)+Asat

intr(ω,ω′)−2Asat
inter(ω,ω′). (4.14)

The effect of the interference tends to reduce the satellite part of the spectral function, and the

spectral weight is shifted back to the quasi-particle peak. This variation accounts for the a(ω) factor

appearing in the weight of the quasi-particle peak. The detailed derivation of the components of the
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spectral function arising from a PP dielectric function have been presented elsewhere.[62] Here it

is sufficient to present results characterized by the extension to a many-pole loss-function as in Eq.

(4.6). Thus the intrinsic and interference contributions are given by

Asat
intr(ω,ω′) =

1
π ∑

i
giω2

i

Z ∞

0

dq
ωi(q)3 δ(ω′−ωi(q)), (4.15)

Asat
inter(ω,ω′) =

1
2πk ∑

i
giω2

i

Z ∞

0

dq
qωi(q)2 δ(ω′−ωi(q))

× ln
[

ωi(q)−q2/2+ k q
ωi(q)−q2/2− k q

]

, (4.16)

a(ω) =
1

2πk0
∑

i

giω2
i

Z ∞

0

dq
qωi(q)2

× ln
[

ωi(q)+q2/2+ k0 q
ωi(q)+q2/2− k0 q

]

, (4.17)

where k = [2(ω−ω′)]1/2 is the photo-electron wavenumber and k0 = [2(ω)]1/2 is the on-shell photo-

electron wavenumber. The extrinsic contribution to the spectral function can be found from the

photo-electron self-energy Σ(k,ω+ω′) and renormalization constant Zk.

Asat
ext(ω,ω′) ≈ −

1
π|Zk0 |

[

Γk + ImΣ(k,ω+ω′)

[ω′ +∆k]2 +[Γk]2

−
ImZk0

ω′
e−(ω′/2ωp)

2
]

, (4.18)

where

∆k = Re [Σ(k0,ω)− Σ(k,ω+ω′)] (4.19)

Γk = −Im [Σ(k0,ω)−Σ(k,ω+ω′)]. (4.20)

Fig. 4.6 shows our calculation of the satelite spectral function for several photo-electron momenta.

Note that because the satelite peak is quite broad, the main effect is to “steal” weight from the

quasi-particle peak, thus reducing the amplitude of the fine structure in the absorption spectrum.

4.5 XAS Calculations

As illustrations of our approach, we now compare our results for the XANES spectra of Cu and di-

amond as calculated with the many-pole model against those calculated with the single-pole model,

and with experiment. Calculations of the self-energy and the spectral function were converged with
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respect to the number and distribution of poles used to represent the dielectric function. We find

that typically only 10− 20 poles are needed to represent a relatively broad loss function such as

that for Cu. The full multiple-scattering FEFF8 calculation for Cu was converged with respect to

the cluster size as well as the angular momentum cutoff lmax. There are only two free parameters

in our calculations; a small imaginary shift in the potential was used to account for experimental

broadening; and a real energy shift was introduced to correct for the inaccuracy in Fermi energies

calculated by the FEFF8 code.[75]

Comparison with experiment in Fig. 4.7 and 4.8 shows a clear improvement both in the phases

and amplitudes of the XAFS signal and the near-edge structure. These improvements can be linked

respectively, to the real and imaginary parts of the self-energy. The real part induces phase shifts

in the signal while the imaginary part is directly related to the inelastic mean free path and hence

the amplitudes. Fig. 4.7 shows our Cu K edge XANES calculations with both single and many-pole

self-energies compared to experiment. A large (500 atom) cluster was used to calculate the spectra

up to ≈ 35 eV above the Fermi level, above which a smaller (177 atom) cluster was used with higher

angular momentum components. Thus we used lmax = 3 for low energies and lmax = 4 above ≈ 35

eV. This was done in order to ensure that errors due to finite cluster size and angular momentum

cutoff were small compared to effects of the self-energy on the XANES spectrum. The result shows

improvement in the amplitudes and phases of the peaks, especially in the region from ≈ 10− 50

eV (top). The amplitude of the “whiteline” peak (a) is substantially reduced by the corrected self-

energy, while the second peak (b) acquires a phase shift. The dip seen at ≈ 32 eV (c) also attains a

significant phase shift and an increase in amplitude. The considerable improvements seen in this low

energy XANES region can be attributed to the fact that the plasmon pole self-energy has singular

behavior near the plasma frequency. This behavior is absent in the many-pole self-energy which

is naturally broadened by the width of the loss function. Furthermore, there is improvement even

in the EXAFS region 45− 80 eV (bottom). Here the single plasmon pole model gives a smooth,

almost featureless curve, whereas the many-pole model as well as the experiment show noticeable

features at 62 eV (d) and 71 eV (e). Fig. 4.8 presents similar calculations for the diamond K edge

XANES compared to data from non-resonant inelastic x-ray scattering[76]. For diamond we could

not fully converge the multiple scattering calculations with respect to cluster size at all energies

because of memory requirements of the code. Thus we present our results for a 500 atom cluster
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with lmax = 2. Here the results are more difficult to interpret because of errors due to finite cluster

size and our approximate treatment of core hole effects. However, qualitative improvement is seen

in the amplitudes of the EXAFS from ≈ 25 eV on. Specifically, the feature seen in the experiment

at approximately 32 eV (a) is absent in the single plasmon pole calculation, but appears in the new

calculation. Also, the three subsequent peaks (b, c, and d) are enhanced as a result of the new

many-pole calculation, giving better qualitative agreement with experiment. To reiterate, the single

plasmon pole self-energy has a sharp turn-on of the imaginary part which saturates too early, giving

excessive broadening in the range beyond the plasmon energy. Similar self-energy effects have

been seen in the F K-edge spectrum of LiF, where a more computationally demanding full-GW

calculation was performed.[72] We also show in Fig. 4.9 the result of our calculation of the XANES

spectrum using the many-pole self-energy (solid) of SrTiO3 compared to experiment (+), and the

result obtained using the plasmon-pole model. In this case the plasmon-pole model gives results

that only vaguely resemble the experiment, and does not reproduce the high frequency structure of

the spectrum. In addition, the lower frequency structure is enhanced as can be seen by the large

peak at approximately 4990eV which is not present in the experiment. The results obtained using

the many-pole model significantly improve the agreement with experiment, and the all of the high

frequency features are reproduced. Another example is shown in Fig. 4.10 where the experimental

and calculated XANES spectra of pyrococcus furiosus rubredoxin are presented. In this case the

use of the many-pole model reproduces the feature seen at 7140eV in the experimental spectrum

(+), while this feature is not present in the plasmon-pole calculation. This result is preliminary since

there is some uncertainty in the definition of the loss function for a molecule. We are operating under

the premise that the dielectric response in these systems is local and thus can be modeled using only

a small cluster of atoms around the absorbing site. These assumptions will be investigated in the

future.

In addition to our XANES calculations, we have performed a comparison of experiment and the-

ory of the Cu K edge EXAFS using the analysis software ATHENA.[78] To reduce Debye Waller

effects, which are highly correlated with the effects of the self-energy and many-body amplitude re-

duction factor, we used data taken at a low temperature of 10 K. In order to give a fair comparison of

the two theories (PP self-energy and MPSE) we have fixed all parameters to empirical or theoretical

values. First the theory and experiment were aligned by matching features in the range 0−300 eV.
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Then background subtraction and normalization was performed using the same spline fitting range

as well as normalization range for experiment and theory. The EXAFS χ(k) was Fourier transformed

using a k-range of 2.632 Å−1 to 15.5 Å−1 with a weighting of k1. Debye waller factors were set

using the correlated Debye model with ΘD = 315K. In addition, the theory was broadened by 0.45

eV half width half max to account for experimental broadening. The estimate of the experimental

resolution was obtained by comparing to the width of the edge step. As can be seen in Fig. 4.11 the

amplitude of the first shell peak is reduced by our new treatment of inelastic losses, thus improving

the agreement with experiment and demonstrating the adequacy of our calculation of S2
0. Our value

for S2
0 (≈ 0.93) also agrees with a crude approximation (previously implemented in the FEFF8 code)

which calculates the many-body overlap of the atomic system and gives S2
0 = 0.95.

4.6 Application to optical spectra

To show that our model is not limited to XAS, we have also applied it directly to optical spectra

calculated via an interface from ABINIT to the NIST Bethe-Salpeter code. The self-energy cor-

rection is performed a posteriori. In order to do this we make the several approximations which

we will explain here. We assume that the imaginary part of the bulk dielectric function is given by

a convolution of the valence and conduction band density matrices[19] ρ(E) modulated by matrix

elements M of the dipole operator, i.e.

ωε2(ω) ∝
Z EF ermi

EF ermi−ω
dETr [ρ(E)Mρ(E +ω+∆Σ(E +ω))M†] (4.21)

Where ∆Σ(E) is the quasi-particle correction. If we then assume that the valence band is a single

delta function located at the bottom of the gap, we find

ωε2(ω) ∝ Tr [ρ(EFermi −EGap/2)Mρ(EFermi −EGap/2+ω+∆Σ(EFermi −EGap/2+ω))M†]

(4.22)

Thus self-energy corrections may be included in an approximate treatment by convolving the un-

corrected optical spectrum with an energy dependent Lorenzian. Fig. 4.12 shows our result for Dia-

mond compared to experiment, as well as the raw spectrum obtained from the AI2NBSE code[79].

Clearly the convolved spectrum is in good agreement with experiment, giving the correct peak

height and overall shape. Fig. 4.13 shows our result for Cu compared to experiment, as well as a
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spectrum calculated with constant broadening chosen to match the breadth of the structure at ≈ 5eV

to experiment. In this case it is quite clear that a constant broadening is insufficient, leading to

under-broadened structure in the tail (≈ 25eV) of the spectrum.

4.7 Conclusions

An efficient many-pole model for calculations of inelastic losses has been developed and success-

fully implemented in an extension of the multiple scattering code FEFF8. Our many-pole model

is based on an ab initio calculation of the zero momentum transfer loss function by means of the

RSGF approach implemented in an extension of the FEFF8 code. Extrapolation to finite momen-

tum transfer is performed by representing ε(q,ω)−1 as a sum of poles. The approach yields both

the quasi-particle self-energy to account for extrinsic losses and the many-body amplitude factor

S2
0 to account for intrinsic losses and interference terms. The validity of the self-energy model

was checked by comparison with more detailed, first principles calculations.[25] We find that S2
0 is

nearly energy independent over a broad range. Calculations with the many-pole model are shown

to improve agreement with experimental results for the near edge XAS of several materials. In

addition we find that our model is consistent with the plasmon-pole model when applied to the ex-

tended (EXAFS) region, which is an important step toward quantitative full spectrum calculations.

A drawback of the present model is that it does not fully account for the contribution due to the

particle-hole continuum at low energies. Thus the current approach may be expected to give better

results for materials with broad loss functions, since in these cases the self-energy will be dominated

by plasmon-like excitations even at low energies. Other improvements would be to represent the en-

ergy loss function as a sum of broadened poles with momentum transfer dependent broadening as

described in the next chapter, and to better account for the particle-hole continuum. Finally we note

that the development of ab initio calculations of inelastic losses here, together with the recently

developed ab initio Debye Waller factor calculations[39] yields improved first principles calcula-

tions of XAS from structural coordinates alone, without phenomenological models or the need to fit

theoretical model self-energy, mean free path, or many-body amplitude parameters.
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Figure 4.7: Top: Cu K edge XANES calculated from the many-pole self-energy and spectral func-

tion of this work (solid), and for comparison the conventional single-pole model (dashes), and

experiment[8] (+). Bottom: Cu K edge EXAFS shown from k = 3.75−4.55Å−1.
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Figure 4.8: Diamond K edge XANES calculated with the many-pole self-energy and spectral func-

tion of this work (solid), and for comparison the conventional single-pole model (dashes), and exper-

imental non-resonant inelastic x-ray scattering spectrum taken at low momentum transfer (+).[76]
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The value of S2
0 was found to be ≈ 0.93 over most of the EXAFS range.
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Figure 4.12: Imaginary part of the dielectric function ε2(ω) of diamond.
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Chapter 5

BROADENED POLE SELF-ENERGY

In this chapter we describe our broadened pole model of the self-energy, which is an extension of

our many pole model of inelastic losses discussed above. First we discuss the benefits of the broad-

ened pole model. Next, we give a brief description of the GW approximation for the self-energy

given a model for the dielectric function which is dependent only on the energy and the magnitude

of the momentum transfer. We then describe our model dielectric function, which is a sum of cut off

polynomials. Finally, we give compare several results to those of a more computationally intensive

method and discuss some possible uses of this model.

5.1 General Description

We have developed an extension to our many-pole model which includes momentum dependent

broadening in the poles, and therefor approximately treats particle-hole continuum contributions.

This is achieved by using a basis of cutoff polynomial functions to represent the loss function. This

broadened-pole model reduces to the many-pole model in the zero width limit, but in general can

be used to more accurately describe the momentum transfer dependence of the loss function. In

addition, the model is quite efficient requiring only 3–5 poles for convergence of the self-energy

in contrast to the ∼ 20 poles needed to converge when using unbroadened poles. Thus the broad-

ened pole model gives substantial improvement on the current treatment of inelastic losses, without

jeopardizing the efficiency of calculations of XAS.

5.2 The self-energy

We begin with the GW approximation for the self-energy

Σ(k,E) = −i
Z

d3q
(2π)3

dω
2π

G(k−q,E −ω)W (q,ω) (5.1)
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Where G is the single particle Greens function, and W is the screened coulomb potential.

W (q,ω) = vqε−1(q,ω) = vq [1+ vqS(q,ω)] (5.2)

We then rewrite W in terms of the density-density correlation function,

S(q,ω) = −
1

πvq

Z ∞

0
dω′ 2ω′

ω2 − (ω′− iδ)2 Im
[

ε−1(q,ω′)
]

. (5.3)

This gives rise to two terms in the self-energy

Σ(k,E) = ΣHF(k)+Σd(k,E) (5.4)

The first term, ΣHF(k), is the bare contribution and gives the Hartree-Fock exchange term

ΣHF = −
kF

π

[

1+
k2

F − k2

2kkF
ln

∣

∣

∣

∣

k + kF

k− kF

∣

∣

∣

∣

]

. (5.5)

The second term, Σd(k,E), is a dynamically screened exchange correlation potential and it is this

term that we are primarily concerned with. Note that Σd(k,E) may be written in terms of Im
[

ε−1(q,ω)
]

,

Σd(k,E) = i
Z

d3q
(2π)3

dω
2π

v2
qG(k−q,E −ω)S(q,ω)

= −
i

2π2

Z ∞

0
dω′

Z

d3q
(2π)3 vqIm

[

ε−1(q,ω′)
]

I1(q,ω′).

where

I1(ω) =

Z

dω
1

E −ω−E(k−q)− i(kF −|k−q|)δ
×

2ω′

ω2 − (ω′− iδ)2 (5.6)

The above integral may be interpreted as a sum of one loop diagrams, each containing the electron

propagator G as well as a boson propagator

D(q,ω)) =
2ω′Im

[

ε−1(q,ω′)
]

ω2 − (ω′− iδ)2 . (5.7)

Closing in the upper or lower half plane to avoid the pole in the Greens function gives

I1(q,ω) = −2πi

[

θ(kF −|k−q|)

E +ω′−E(k−q)− iδ
+

θ(|k−q|− kF)

E −ω′−E(k−q)+ iδ

]

(5.8)
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If we now assume that Im
[

ε−1(q,ω)
]

is dependent only on the magnitude of the momentum transfer

q, we can reduce the expression for Σd(k,E) to a double integral over q and ω′.

Σd(k,E) = −
1

4kπ3

Z ∞

0
dω′

Z

dq qvqIm
[

ε−1(q,ω′)
]

×

Z k+q

|k−q|
pd p

[

θ(kF − p)

E +ω′− p2/2− iδ
+

θ(p− kF)

E −ω′− p2/2+ iδ

]

(5.9)

=
1

4π3k

Z ∞

0
dω′

{

Z ∞

kF

dqqvqIm
[

ε−1(q,ω′)
]

L3(q,ω′) (5.10)
Z k+k f

k−kF

dqqvqIm
[

ε−1(q,ω′)
]

L2(q,ω′) (5.11)

θ(k− kF)

Z k−kF

0
dqqvqIm

[

ε−1(q,ω′)
]

L3(q,ω′) (5.12)

θ(kF − k)
Z kF−k

0
dqqvqIm

[

ε−1(q,ω′)
]

L1(q,ω′)

}

(5.13)

Where L1, L2, and L3 are given by the following expressions.

L1(q,ω) = ln
[

E +ω−E(k +q)− iδ
E +ω−E(k−q)− iδ

]

. (5.14)

L2(q,ω) = ln
[

E +ω−E(kF)− iδ
E +ω−E(k−q)− iδ

× (5.15)

E −ω−E(k +q)+ iδ
E −ω−E(kF)+ iδ

]

(5.16)

L3(q,ω) = ln
[

E −ω−E(k +q)+ iδ
E −ω−E(k−q)+ iδ

]

. (5.17)

We now wish to choose a model for the loss function such that the integral over ω ′ in the above

expression may be performed analytically, leaving a single integral over the magnitude of the mo-

mentum transfer. This led us to chose polynomial functions to represent the loss function. Note that

an alternative would be to represent the loss function as a sum of Lorenzian functions. This appears

advantageous since one can perform integrals over a Lorenzian in the complex plane. However,

various properties of the inverse dielectric function are not well represented by a sum of Lorenzian
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functions. In particular, the imaginary part should be an even function of frequency, but should

also go to zero at zero frequency. In addition, since we wish to model the time ordered dielectric

function, the real part should also be even. Thus an imaginary part which is an even sum of a few

Lorenzian for positive frequencies does not correspond to a complex function which is simply given

by a few poles at those same frequencies. This complicates the integrals substantially. One can

ignore the fact that the loss function should be zero at zero frequency, as long as the width of the

loss function is small compared to its centroid (i.e. the plasma frequency ω p), but the effects of the

width are quite small in this case. In addition, we are interested in a model which represents the loss

function for intermediate momentum transfer (q2 ≈ ωp), where the width will be comparable to the

plasma frequency.

5.3 Model dielectric function

As mentioned above we will write the loss function as a sum of cutoff polynomial functions.

Im
[

ε−1(q,ω)
]

= ∑
i

ai fi(q,ω), (5.18)

where

fi(q,ω) = Ni(q)Pi(q,ω)θ
(

ω−ω−
i (q)

)

θ
(

ω+
i (q)−ω

)

(5.19)

where

ω±
i (q) = ωi(q)±Γi(q) (5.20)

and Pi(q,ω) is a polynomial in ω. Thus each pole is given in terms of the width Γi(q) of the loss

function, and the plasmon dispersion ωi(q). In addition we constrain the functions to be positive

within the region

ω−
i (q) < ω < ω+

i (q),

which ensures a positive loss function. In order to simplify the model and avoid unphysical cut-

offs, we chose fourth order polynomials which are continuous at the boundaries, multiplied by an

additional factor of ω to ensure that the loss function is zero in the zero frequency limit.

Pi(q,ω) = ω
(

ω−ω−
i (q)

)2 (

ω−ω+
i (q)

)2 (5.21)
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We now proceed to define each function fi(q) by first choosing a a simple model for the broadening,

then matching the first and first inverse moments to those of the Lindhardt dielectric function. We

choose to match M−1 and M1 for several reasons: 1) because we have found previously that a correct

matching of these moments is important for the accuracy of the self-energy at low and intermediate

energies; and 2) M1 and M−1 are easily found in the case of any known dielectric function since

they are related to the f-sum rule and the zero frequency limit of Re
[

ε−1(q,ω)
]

. We could match a

third moment (i.e. M0) to define the dispersion relation, but at expense of efficiency since numerical

integration of the Lindhardt dielectric function must be performed at each q and ω p. Instead we

choose a simple linear model for the broadening Γ(q) = Γi(0)2 +2.4q based on the high momentum

transfer limit. In the case of the Lindhardt dielectric function Γi(0) = 0, while in the general case

Γi(0) will be an extra parameter, which will be obtained by fitting to the dielectric function of the

material in question, in the limit q → 0. Equating the moments of the Lindhardt dielectric function

and our polynomial representation gives the following relations for ω i(q), and Ni(q). Note that the

labeling of the q dependence has been dropped for the sake of brevity.

N−1
i = −

2
πω2

p

1
210

{

θ
(

ω−
i

)(

ω+
i −ω−

i

)

×

[

2(ω−
i )2 +3ω−

i ω+
i +2(ω+

i )2]+

θ
(

−ω−
i

)

(ω+
i )5

[

(

7ω−
i −2ω+

i

)2

+7ω−
i ω+

i

]}

. (5.22)

and

ωi =

√

−πω2
p +2/7(2.4q)2M−1

2M−1
. (5.23)

The above equation for ωi holds only if the value of the right hand side is greater than the broadening

Γi, otherwise ωi is a solution to the quartic equation
7πω2

p(8Γ2
i −9Γiωi +3ω2

i )

2(Γi +ωi)2(8Γ2
i −5ωiΓi +ω2

i )
= M−1 (5.24)

To avoid complication, we use the first expression (Eq. 5.23) for ωi, noting that the difference is

quite negligible, as seen in Fig. 5.1. Fig. 5.2 shows a comparison of our model to the Lindhardt

dielectric function for a range of momentum transfers.

We now have a set of functions { fi(q,ω)} with which we will extrapolate our calculated loss

function to finite momentum transfer. This is done by fitting the zero momentum transfer dielectric
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Figure 5.1: The modeled dispersion relation ωi(q) for a single pole given by Eq. 5.23 (solid), the

exact solution (long dashes) given by Eq. 5.24, and for comparison, that of the plasmon pole model

(short dashes). Note that the solution given by Eq. refwieq reproduces the exact solution satisfacto-

rily.
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Figure 5.2: Real (left) and imaginary (right) parts of our model for the inverse dielectric function

(solid) and the inverse Lindhardt dielectric function (dashes) for a range of momentum transfers.

function to a few (≈ 3) functions, with the constraint that the first and first inverse moments are

matched. Our model is illustrated in Fig. 5.3, where we have represented the diamond loss function,

as calculated via an extension to FEFF8, with three of our polynomial basis functions. An alternative

method would be to match moments of the calculated loss function. Unfortunately, the reality of

the parameters comes into question when defining them in this manner, thus we instead split the

calculated dielectric function into regions, and match the inverse and zeroth moment, as well as the

quantity σ̄2, for each region, where the σ̄2 is defined as follows,

σ̄2 =
M2 −2M0/M−1 +M3

0/M−1
M0

. (5.25)

For our simple model functions, this is equivalent to

σ̄2 =
1

M0

Z ∞

0
dω (ω−ωi)

2Im[ε−1(ω)] (5.26)

which is close to the standard deviation as long as ωi is not much less than Γi, and is equivalent

to the standard deviation in the limit Γi → 0, since ωi → ω̄ in this limit. This defines a procedure
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very similar to the one detailed in our discussion of the many-pole model.[80] In fact the same

procedure may be used as long as the widths, Γi(q) → 0 in the long wavelength limit q → 0. We

note here that our model for the loss function is quite similar to a model suggested by E. L. Shirley,

in which he matches a model function to three moments of the dielectric function, including the

first inverse, zeroth, and first moment.[81] The major difference between the two models is that the

model suggested in the above reference is is more flexible, allowing a more accurate representation

of the dielectric function, but requires double numerical integration for each evaluation of the self-

energy, whereas our model requires only a single numerical integration. In addition, the above

model matches to the momentum transfer dependent moments of the loss function calculated for the

material in question, while, in the interest of efficiency, we chose to assume the momentum transfer

dependence of the Lindhardt loss function.

At this point, we have a model which incorporates the momentum transfer dependence of the

width of the inverse dielectric function, which is important in calculations of the quasi-particle self-

energy for intermediate energies. Our model uses cutoff polynomial functions as a basis, and the

momentum transfer dependence of each function is chosen to match properties of the Lindhardt

dielectric function. In addition, the method is quite efficient, requiring only a few (≈ 3) functions to

represent a relatively broad loss function, such as that of diamond, and can be used in calculations

of the self-energy over broad ranges of energy (≈ 0 − 1000 eV). Although calculations are not

appreciably faster than those of the many-pole model, we note that our broadened pole model is

easily automatable, and could be used as an interpolative model for more detailed calculations of

the momentum transfer dependent loss function following for example Soininen et al. [72, 25] In

addition, the time taken for the calculation of the self-energy once the loss function calculated is

on the order of minutes, which is insignificant when compared to a standard XANES calculation.

Another possible use for the model would be to fit to the momentum transfer dependent loss function

from experimental non-resonant inelastic x-ray spectra (NRIXS) for subsequent use in self-energy

calculations.
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Chapter 6

FULL POTENTIAL MULTIPLE SCATTERING

In this chapter we discuss the effects of the muffin-tin approximation on calculations of XANES

spectra. We also discuss recent progress in the development of a full potential multiple scattering

version of the FEFF code. In particular we have included an interface to the ORCA electronic

structure code[27, 28] in order to obtain Kohn-Sham potentials and densities.

We start by describing the deficiencies of the muffin-tin approximation, along with some history

regarding full potential multiple scattering theory. We then give a brief overview of the Greens

function within real space full potential multiple scattering theory. Next we give some details of

our interface with ORCA. We then discuss our method for obtaining overlapping “fuzzy” Voronoi

cells[26]. Subsequently, we compare calculations of the density of states (DOS) with those of

ORCA. Finally, we give results for XANES spectra of several small molecules and compare to

calculations from the FEFF82 muffin-tin code as well as to experiment.

6.1 The Muffin-Tin Approximation and Full Potential Multiple Scattering Theory

The use of the spherical muffin-tin potential is conventional in MST calculations, and the approx-

imation is valid in many cases, especially those with high symmetry such as mono-atomic cubic

crystals. The muffin tin approximation is consistently used to provide quantitative calculations of

extended x-ray absorption fine structure (EXAFS), and qualitative x-ray absorption near edge struc-

ture (XANES). However, many systems, particularly small molecules and non-cubic solids, require

the use of full potential codes to reproduce the XANES spectra, or even to obtain qualitative agree-

ment. It is for this reason that full potential multiple scattering theory (FP-MST) has been developed

over the past thirty years or so. The validity of the theory was controversial for some time, but FP-

MST has now been rigorously proven.[82, 83, 84, 85, 86, 87, 88, 89] Several codes have been

developed to implement FP-MST,[90, 26, 91, 92, 93] but the availability of these codes is limited.

Thus the development of a stable, widely available, user friendly FP-MST code is an important step
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toward quantitative analysis of XANES spectra. To this end, we have developed an interface for a

full potential version of the FEFF multiple scattering code which allows us to use well established

electronic structure codes for obtaining ground state properties, while retaining the efficiency of FP-

MST for excited state properties. Interfacing with existing codes has the added benefit that a wide

variety of methods may be used to obtain the converged density, including density functional theory

(DFT) with any type of exchange-correlation kernel, Hartree-Fock (HF), second order perturbation

theory (MP2), and coupled cluster methods. In order to improve molecular calculations, an new

expansion for the Green’s function has been developed and applied, which gives increased stability

to calculations of the density matrix for bound state energies. In the remainder of this chapter we

give a brief description of FP-MST, and describe our implementation.

6.2 The Green’s Function in MST

Since all quantities of interest (i.e. the electron density and absorption spectrum) are related to

the Green’s function, we begin with the expression for the Green’s function within the real space

multiple scattering formalism.

G(r,r′) = ∑
L

ΨL(r
i
<)HL(r

i
>)Θi(r)Θi(r

′)

+ ∑
LL′

ΨL(r
i)Gi j

LL′Ψ̄′
L(r′ j)Θi(r)Θ j(r

′). (6.1)

Here ri = r −Ri is the coordinate relative to the ith scattering center, and Θi(r) is the ith cell

function which is unity for r inside the cell and vanishes otherwise. The ΨL(r) and HL(r) are (re-

spectively) the regular and irregular solutions to the single site Schrodinger equation. The second

term in the above equation is the “scattering” term and involves the matrix elements (G i j
LL′) of the

Green’s function in a site and angular momentum basis. These can be calculated given the single

site scattering (t) matrices and the site and angular momentum matrix elements of the free Green’s

function G0
i jLL′ . The main ingredients to a multiple scattering calculation are therefor the cell func-

tions and potentials, the solutions to the single site Schrodinger equation as well as the single site

scattering matrices, and the site and angular momentum decomposition of the free Green’s func-

tion. Thus our calculation of the Green’s function procedes as follows. First, the total potential is

found using the ORCA electronic structure code.[27, 28] Next, we define the Voronoi cells and the
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cell potentials. We then solve the single site Schrodinger equation to obtain the single site wave-

functions, scattering matrix (ti), and Green’s function (Gi). The matrix elements of the scattering

Green’s function (Gi j
LL′) can then be found by a full multiple scattering (FMS) matrix inversion. We

will now give a description of each of these steps. In addition, we will describe our re-expansion of

the Green’s function.

6.3 Obtaining the potential from ORCA

The ORCA electronic structure code is used to obtain the total potential by calculating the elec-

tron density as well as the electrostatic potential within ORCA, and subsequently calculating the

exchange-correlation potential using the Von Barth - Hedin LDA functional for use in the FEFF

FP-MST calculation. The self consistent calculation of the density and electrostatic potential may

be performed using a variety of methods, including density functional methods, Hartree-Fock and

hybrid methods, as well as more accurate but time consuming methods such as second order per-

turbation theory (MP2), and coupled cluster methods. However, for simplicity and so that we may

compare results to those of FP-MST, we use only a standard LDA functional for the calculations

presented in this chapter.

6.4 Voronoi Polyhedra and the Cell Potentials

Formally, multiple scattering theory is a method for solving differential equations in which space

is divided into non-overlapping space filling cells. A standard method for defining such cells is

the Voronoi prescription, in which a cell is defined by the set of all points for which the center is

closer than any other cell center in the system. In solids these cells are called Voronoi polyhedra

and correspond to the Wigner Seitz cells, while in molecules some cells are open, for example, in

the Cl2 molecule, the cells are half planes. Thus we add the constraint that cells be contained within

a sphere of radius rmax. We use the following algorithm to define these cells. First we define the

weight function

Θi(r) = θ(rmax − ri)Π j 6=iθ(ri ·ni j −Ri j/2) (6.2)

where ni j is the normal vector pointing from the ith atom to the jth atom, and Ri j is the distance

between the atoms. In addition, we relax the constraint that the planes be located at the half bond
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length Ri j/2, and allow them to be located anywhere along the bond. The cells may also be smoothed

by defining a “smooth theta function” i.e.,

θΓ(x) =



























1 x < −Γ/2

Cos2 [π/2(x−Γ/2)] −Γ/2 < x < Γ/2

0 x > Γ/2

The above smoothing guarantees that the sum of all cells at any point is unity. While FP-MST is

only strictly valid for non-overlapping cells, is has been shown that one can obtain reasonable results

with overlapping cells, and the use of overlapping cells is quite standard for codes which utilize the

muffin-tin approximation.[?, ?] With the above definition of the theta function, the cell potential is

given by

vi(r) = Θi(r)∗V (r). (6.3)

Thus we must obtain the total potential in order to find the cell potentials. To this end, we have

created an interface between our full potential version of the FEFF code, and the ORCA electronic

structure code. Here we use the self consistent density and electrostatic potential which is output

from ORCA, to calculate the effective potential by adding the Von Barth Hedin LDA exchange

correlation potential. The converged density and electrostatic potential may be formed using a

variety of density functionals as well as non-DFT methods.

6.5 The Density of States

Here we compare our results for the density of states for several molecules to those of the ORCA

electronic structure code. The density of states is given by the trace of the density matrix, which is

proportional to the imaginary part of the Green’s function.

ρ(E) = −
1
π

Z

d3r Im[G(r, r,E)] (6.4)

This is a natural quantity to compare since ideally, the FP-MST calculation of the DOS would match

exactly that from ORCA. Fig. 6.1 compares the DOS of SF6 calculated using FP-MST (solid) to

that of ORCA (dashes). Also shown is the DOS calculated using FEFF8 (dots), which utilizes

the muffin-tin approximation. All three calculations are based on an LDA functional although the
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functional used in the MS and FP-MST calculations is slightly different than that used in the ORCA

calculations. The agreement between the MS result and the ORCA result is clearly improved when

FP-MST is used. In addition, the level of agreement is quite good considering the differences in

methodology and implementation. We also note that in the final analysis, FP-MST will be used to

form the self consistent potentials using a method similar to that of FEFF8.[] However, for small

molecules the interface to external electronic structure codes still proves useful since it is faster and

perhaps more stable than self consistent FP-MST calculation of the potentials.

6.6 Full Potential XANES Calculations

Here we compare experimental XANES spectra of GeCl4 and Br2 with those calculated using our

FP-MST version of the FEFF code as well as with other theory, including that of FEFF8. Fig.

6.2 shows the experimental Ge K-edge XANES of GeCl4 (circles) along with our FP-MST results

(solid), the FP-MST results of Hatada et al.[?] (dashes) and the muffin tin result of FEFF8 (dots).

Both FP-MST show improved agreement with experiment when compared to the muffin tin result

which lacks any structure beyond the whiteline peak. Clearly the peaks seen at 11115 and 111122eV

are not reproduced by the muffin-tin calculation. There are however several differences in the cal-

culations other than the extension of MS theory to full potential. First, both FP-MST calculations

used empty cells in order to include more empty space without jeopardizing the stability of the cal-

culation. The use of empty cells for the muffin-tin case was tested, and the effect was found to be

negligible. Also, the choice of an interstitial potential within FP-MST is theoretically arbitrary and

should not effect the results. This is not the case when using the muffin-tin approximation, and the

choice of a single interstitial potential can thus be a major problem for small molecules and highly

asymmetric systems where the absorbing atom potential at the muffin tin radius varies widely with

angle. For the results presented we have allowed FEFF8 to calculate the interstitial potential by

averaging the total potential in the interstitial region. A comparison of the theoretical and exper-

imental Br K-edge XANES of Br2 is shown in Fig. 6.3. In this case the effects of full potential

are more severe. This is perhaps expected since the potentials of this diatomic molecule are less

spherical than those of GeCl4, which has tetrahedral symmetry about the absorbing atom. Again,

the muffin-tin results (dots) show almost no structure, missing both the whiteline peak at 13472eV,
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Figure 6.1: DOS for SF6 molecule calculated by FP-MST (solid) compared to that calculated using

the ORCA electronic structure code (dashes), as well as MS muffin-tin (dots).

as well as the subsequent dip, and the shoulder at 13480eV. In contrast, the FP-MST result (solid)

agrees well with experiment (circles), reproducing all features. The slight discrepancy in the relative

heights and positions of the features is probably due to self-energy effects.

Ge K-edge XANES of GeCl4.

6.7 Conclusions

We have developed an interface between the ORCA electronic structure code and a FP-MST version

of the FEFF8 code for calculation of excited state spectra. The ORCA code is used to obtain full,

non-spherical potentials which are then used to calculate XANES spectra via FP-MST. There are

several benefits to this interface. First, it simplifies development of the FP-MST version of FEFF
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Figure 6.2: Ge K-edge XANES of GeCl4. Our calculation (solid) is compared to that of Hatada

et al. [?] (dashes) as well as with experiment (circles). We also show a standard FEFF8 muffin-tin

calculation (dots).
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and a standard FEFF8 muffin-tin calculation (dots).
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by making use of a well tested, reliable method of obtaining potentials and densities. Second, the

FEFF code is based on a real space Greens function formalism which is much more efficient than

orbital based methods for calculations of excited state properties. Finally, the ground state may be

calculated quite efficiently by standard orbital or plane wave based methods, especially for small

molecules and simple crystals, and FP-MST may be more time consuming for these systems. Our

implementation of FP-MST includes a modified “fuzzy” Voronoi cell which overlaps its neighbors.

Thus these smoothed cell functions may be represented with relatively few terms in an angular

momentum expansion. We have tested our code by comparing our calculated DOS to that of ORCA

and also by comparing calculated XANES spectra to experiment.

Our results show that our FP-MST version of FEFF can be used to reproduce the DOS calculated

by ORCA, improving significantly upon the muffin-tin results. Our calculated XANES spectrum of

GeCl4 compares well with experiment as well as with another independent FP-MST calculation,

and reproduces features which are not present in the muffin-tin results. Our XANES results for Br2

also show significantly improved agreement with experiment when FP-MST is used in place of the

muffin-tin approximation.

These results for both the DOS as well as the XANES are promising. However, the quality of the

results is unstable for some systems, especially for calculations of XANES spectra. Thus several

tests and further developments are proposed. First, single atom calculation should be performed

with and without empty cells, varying the positions to check the stability of the code against large

jumps at the cell boundary. Second, the spacial grid must be made more flexible in order to ensure

that the solutions to the Schrodinger Eq. are accurate in the region near the cell edges.
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Chapter 7

CONCLUSIONS

In this chapter, we summarize the developments detailed in the previous chapters and make

conclusions about our work.

We have introduced several improvements to the current theory and analysis of XAS which

greatly reduce the discrepancy between theory and experiment. In particular, three new develop-

ments have been discussed. First, the Bayes-Turchin analysis method (Ch. 3), which addresses the

instabilities of the standard least squares method, was implemented for both EXAFS and XANES

as well as full spectrum (EXAFS+XANES) analysis. Next, two major causes of discrepancy be-

tween theory and experiment were discussed (Ch. 4, 5, and 6), and improved theoretical models

were presented for each. Several models of inelastic losses were presented. In Chapter 4 an efficient

many-pole model of inelastic losses was presented, and applied to calculations of XAS as well as

optical spectra. These ideas were extended in Chapter 5 to include a more flexible model for the

dielectric function. Finally, full potential effects in XAS were discussed in Chapter 6, and a full

potential multiple scattering version of FEFF which interfaces with the ORCA electronic structure

code was developed and applied to calculations of the DOS as well as XANES spectra. In more

detail, our conclusions are as follows.

A Bayes-Turchin analysis code for EXAFS and XANES has been developed. The method

makes use of a priori information to constrain the fitting parameters, which stabilizes the fitting

procedure. This is an improvement over the traditional least squares algorithm which is inherently

ill-conditioned. Additionally, the relevance of the parameters is quantified. These features give

the flexibility to choose a large number of parameters to include in the fit, reducing dependence of

the outcome on the user, and allowing for automation of the fitting procedure. Analysis was per-

formed on a variety of systems including gas phase GeCl4, solid Ge, and several metalloproteins.

Results show that for EXAFS analysis of well characterized systems with well characterized errors,

the Bayes-Turchin method is a a stable alternative to the standard least squares method. For more
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complex systems such as metalloproteins where even the chemical constituents may be unknown

beyond the first shell, the method is more difficult to apply. Furthermore, the results are sensitive

to the details of the error estimates. The results of XANES fits show that for well characterized

systems, bond lengths may be obtained to within ≈ 0.03Å of those obtained from XRD and EX-

AFS analysis, using a limited spectral range. Bond angles are also reproduced to within ≈ 1deg of

those obtained from XRD. In addition, a simplified model including only the first shell may be used

to obtain bond lengths withing ≈ 0.05Å of those obtained from EXAFS, however, coordination

numbers obtained using only the first shell were systematically underestimated for the systems that

we investigated.

In Chapter 4 an efficient many-pole model for calculations of inelastic losses has been devel-

oped and successfully implemented in an extension of the multiple scattering code FEFF8. Our

many-pole model is based on an ab initio calculation of the zero momentum transfer loss function

by means of the RSGF approach implemented in an extension of the FEFF8 code. Extrapolation to

finite momentum transfer is performed by representing ε(q,ω)−1 as a sum of poles. The approach

yields both the quasi-particle self-energy to account for extrinsic losses and the many-body ampli-

tude factor S2
0 to account for intrinsic losses and interference terms. The validity of the self-energy

model was checked by comparison with more detailed, first principles calculations.[25] We find that

S2
0 is nearly energy independent over a broad range. Calculations with the many-pole model are

shown to improve agreement with experimental results for the near edge XAS of several materi-

als. In addition we find that our model is consistent with the plasmon-pole model when applied to

the extended (EXAFS) region, which is an important step toward quantitative full spectrum calcu-

lations. A drawback of the many-pole model is that it does not fully account for the contribution

due to the particle-hole continuum at low energies. approach may be expected to give better results

for materials with broad loss functions, since in these cases the self-energy will be dominated by

plasmon-like excitations even at low energies.

An extension to the many-pole model was described in Chapter 5 where we represented the

energy loss function as a sum of polynomial functions with momentum transfer dependent broad-

ening, which better accounts for particle-hole continuum contributions. In addition, the number of

functions or “poles” needed to accurately represent the loss function is greatly reduced as shown in

Figs. 5.3 and 5.4.
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In Chapter 6 several new developments to our full potential multiple scattering version of FEFF

are discussed. An interface to the ORCA electronic structure code was implemented and allows

for fast calculation of self-consistent fully non-spherical potentials and densities of molecules. In

addition, a new method of forming overlapping fuzzy Voronoi cells is presented. The methods

were checked by comparing our calculations of the DOS to that of ORCA. Agreement between the

two methods was good, especially considering the theoretic and algorithmic differences between

the calculations, and was much improved over the muffin-tin calculation. We also found good

qualitative agreement with experiment for our results of the XANES spectra of GeCl4 and Br2

molecules which are strongly effected by non-spherical potentials. Our full potential calculations

give vast improvement over the muffin-tin approximation, especially in small molecules and systems

with planar symmetry. However, some instabilities exist which must be investigated.

We note that the above developments, together with the recently developed ab initio Debye

Waller factor calculations[39] yield improved first principles calculations of XAS from structural

coordinates alone, without phenomenological models or the need to fit theoretical model self-energy,

mean free path, or many body amplitude parameters. In addition, our theoretical developments can

be used in coordination with the Bayes-Turchin analysis method by providing improved a priori

values to fit parameters and their uncertainties.

In summary, our goals of improving the theory and analysis of XAS have been realized. We

have shown (Figs. 4.7, 4.8, 4.9, and 4.10) that our many pole model gives improved agreement with

experiment for a variety of systems. In addition, quantitative results for EXAFS are improved as

well. Our full potential results (Figs. 6.2, 6.3, and ??) also agree well with experiment for several

systems where the muffin-tin approximation is completely inadequate. Analysis has been performed

on several metalloproteins using both EXAFS and XANES regions. We have found that reasonable

structural parameters may be obtained from XANES analysis even with a limited energy range. Our

codes include many features which are useful for the characterization of biological molecules such

as metalloproteins. For example, the interface to ORCA for obtaining non-spherical potentials and

the z-matrix input for the Bayes-Turchin code are particularly suited for molecules. Additionally,

the Bayes-Turchin algorithm allows for automation of the analysis procedure which is essential for

achieving high throughput characterization of metalloproteins via XAS.

Although we have provided several improvements in the theory and analysis of XANES spectra,
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there is still work to be done. The full potential version of FEFF is not as stable as the muffin-tin

version and can not yet be used in fitting. In addition, the Bayes-Turchin method is sensitive to

the details of experimental and theoretical errors, which can be extremely system dependent. Thus

an automatable method must be developed to characterize the errors for a given system. Another

necessary development is a method for characterizing the effects of vibration on XANES spectra.

The effects of vibration on the spectrum can basically be taken into account by averaging a number

of configurations given by calculation of the phonon spectrum. This configurational average may be

performed analytically for EXAFS by cumulant expansion of the path length distribution functions,

XANES calculations must be performed numerically on a number of molecular dynamics snapshots

until convergence is achieved. Finally, the excited states of many metalloproteins include ligand to

metal charge transfer states, which can strongly effect the XANES spectrum. Thus our many-pole

model of inelastic losses must be modified to include these effects more accurately.
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Appendix A

PLASMON-POLE SELF-ENERGY

Here we give a more complete description of the plasmon-pole (PP) model of Hedin and

Lundqvist.[48, 49, 55] We begin with the GW approximation for the self-energy[55]

Σ(r,r′,E) = i
Z

dω
2π

G(r,r′,E −ω)W (r,r′,ω). (A.1)

Here G is the single-particle Greens function, which has a spectral representation

G(r,r′,E) = ∑
i

φi(r)φ∗
i (r

′)

E −Ei + iδ sgn(Ei −EF)
, (A.2)

and W is the dynamically screened coulomb potential,

W (r,r′,ω) =

Z

d3r′′ ε(r,r′′,ω)−1V (r′′,r′), (A.3)

V (r,r′) =
1

|r−r′|
. (A.4)

Here V is the bare Coulomb potential and ε−1 is the inverse dielectric matrix. Using the Green’s

function for a homogeneous electron gas, the self-energy in the momentum representation is given

by Eq. (4.1). In frequency space the imaginary part of the inverse dielectric function (i.e., the loss

function of the electron gas) is modeled as a single pole at ω(q) = [ω2
p + aq2 + bq4]1/2, where the

coefficients of the dispersion a = k2
F/3 and b = 1/4 are chosen to give the Thomas-Fermi potential

at low frequency, as well as the correct high momentum transfer limit.[49, 55] This gives an inverse

dielectric function whose imaginary part is given by

L(q,ω) = −Im
[

ε(q,ω)−1] = πω2
p δ[ω2 −ω(q)2]. (A.5)

The real part of the loss function can be obtained via a Kramers-Kronig transform

Re
[

ε(q,ω)−1] = 1− 1
π

Z ∞

0
dω′ 2ω′

ω2 −ω′2 Im
[

ε(q,ω′)−1]

= 1+
ω2

p

ω2 −ω(q)2 . (A.6)
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Inserting these results into Eq. (4.1) then yields two terms: the first term can be integrated analyti-

cally and gives a static Hartree-Fock exchange potential ΣHF

ΣHF(k) = −
kF

π

[

1+
k2

F − k2

2kkF
ln

∣

∣

∣

∣

kF + k
kF − k

∣

∣

∣

∣

]

. (A.7)

The second term, denoted by Σd(k,E;ωp), is the dynamically screened exchange-correlation con-

tribution, which can be interpreted as the one loop diagram containing the electron propagator G

and a boson (plasmon) propagator

D(q,ω) =
2ω(q)

ω2 −ω(q)2 + iδ
. (A.8)

Thus the dynamic term Σd arises from the creation of virtual bosons which interact with the photo-

electron via an effective coupling |g(q)|2 = ω2
pV (q)/2ω(q). The integral over ω and solid angle in

Eq. (4.1) can be done analytically, so that Σd(k,E) is given by a one-dimensional integral over |q|.

The resulting expression for the self-energy is quite lengthy and is not reproduced here, but can be

found in Eq. (13) of Ref. [49].
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Appendix B

EQUIVALENCE OF SELF-ENERGY FORMULAE

In this appendix we demonstrate that self-energy expressions of Hedin and Lundqvist and of

Quinn and Farrell are essentially equivalent, except for slight differences the approximations used.

We start with the self-energy of an electron gas within the GW approximation as given by Hedin and

Lunqvist[48] in Eq. (4.1). This expression can be split into two terms. The Hartree-Fock exchange

potential ΣHF , and the dynamically screened exchange-correlation potential Σd which includes the

dynamic response proportional to [ε(q,ω)−1 −1].

Σ(k,E) = ΣHF(k)+Σd(k,E) (B.1)

and

Σd(k,E) = i
Z

d3q
(2π)3

dω
2π

V (q)
[

ε(q,ω)−1 −1
]

×
1

E −ω−Ek−q + i(|k−q|− kF)δ
.

(B.2)

If we rewrite ε(q,ω)−1 in its spectral representation

ε(q,ω)−1 = 1−1/π
Z

dω′ 2ω′

ω2 − (ω′− iδ)2 Im
[

ε(q,ω)−1] , (B.3)

Eq. (B.2) becomes

Σd(k,E) = −
i
π

Z ∞

0

Z

d3q
(2π)3 2ω′V (q)Im

[

ε(q,ω′)−1 −1
]

×

Z

dω
2π

1
ω2 − (ω′− iδ)2

1
E −ω−Ek−q + i(|k−q|− kF)δ

.

(B.4)

The integral over ω can be performed by deforming the contour to the imaginary axis and includ-

ing residues of the Greens function when necessary. The integral along the imaginary axis is purely

real, thus the imaginary part of the self-energy is given by the imaginary part of the contribution

from the residues of the poles in the Greens function. The result can then be split into two terms.
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One arises from the particle contribution and occurs for energies greater than the Fermi energy

Im [Σ(k,E)] =
Z

d3q
(2π)3 Θ(Im [∆Ek−q])Θ(Re [∆Ek−q])

×
1
q2 Im

[

ε(q,∆Ek−q)−1] , (B.5)

where

∆Ek−q = E −Ek−q + iδ(|k−q|− kF . (B.6)

The other is associated with the hole contribution where the energy is less than the Fermi energy

Im [Σ(k,E)] = −

Z

d3q
(2π)3 Θ(−Im [∆Ek−q])

×Θ(−Re [∆Ek−q])
1
q2 Im

[

ε(q,∆Ek−q)−1] . (B.7)

Quinn and Ferrell make the further approximation that E = k2/2, which yields the formula derived

in Ref. [58] and is used as a starting point by Penn.[21, 94] Thus, Penn’s formulation is equivalent to

that of Hedin and Lundqvist[48, 49] with zeroth order approximations for the quasi-particle energy

and renormalization constant.
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Appendix C

SINGLE SITE EQUATIONS, SCATTERING MATRIX, AND GREEN’S
FUNCTION

The single site Schrodinger equation is

[Hi −E]Ψ(r) = 0, (C.1)

where

Hi =
p2

2
+ vi(r). (C.2)

We start with a set of solutions ΨL(r) which are proportional to free solutions near the origin,

where the potential is spherical.

ΨL(r) → rl ∗YL(r̂). (C.3)

Expanding ΨL(r) in spherical harmonics gives

ΨL(r) = ∑
L′

RLL′(r)YL′(r̂). (C.4)

The radial functions RLL′(r) are solutions to the coupled differential equations

∑
L′

[

−
1

2r2
d
dr

r2 d
dr

+
l(l +1)

r2 + vLL′(r)−E

]

RLL′(r) = 0, (C.5)

where

vLL′ = ∑
Lv

vLv(r)
Z

dΩ YL(Ω)YLv(Ω)YL′(Ω) (C.6)

and the vL(r) are the coefficients in the angular momentum decomposition of the cell potential.

We now write the solution ΨL(r) in the region outside the range of the cell potential as a linear

combination of the regular and irregular free solutions.

∑
L′

ALL′ jL′(r)+BLL′hL′(r). (C.7)

Matching this to the numerical solutions at the radius of the circumscribing sphere, Rc, gives

ALL′ =
W [RLL′(r),hL′(r)]
W [ jL′(r),hL′(r)]

(C.8)
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and

BLL′ =
ALL′ jL′(r)−RLL′(r)

hL′(r)
(C.9)

Now we can solve for the scattering matrix elements tLL′ by comparing our expression for the wave-

functions in the region outside the range of the potential to another expression involving the scatter-

ing matrix.

Ψ̄L(r) = ∑
L′

jL′(r)+ tLL′hL′(r). (C.10)

This gives for the solution of the t-matrix,

tLL′ = ∑
L1

BLL1A−1
L1L′ . (C.11)

In addition the cell greens function is defined as,

Gi(r,r′) = ∑
LL′L′′

RLL′(r)YL′(r̂)HL′′L(r′)YL′′(r̂′). (C.12)

C.1 Re-expansion of the Green’s Function

The normal expansion of the Green’s function given in Eq. 6.1 has convergence issues for large

spacial arguments due to the exponential growth of the scattering contributions. The following re-

expansion allows for the use of scattering terms which fall off exponentially, thus mitigating the

problem. We begin with the real space Dyson equation for the Greens function.

G(r,r′) = G0(r,r′)+

Z

d3r′′d3r′′′ G0(r,r′′)×

T (r′′,r′′′)G(r′′′,r′) (C.13)

Expanding in a site basis gives (neglecting spacial coordinates for brevity)

G = G0 +∑
i

G0t iG0 +∑
i

∑
j 6=i

G0t iG0t jG0 + · · · (C.14)

Here the first two terms

G0 +∑
i

G0t iG0 (C.15)

represent the bare and single scattering contributions to the Greens function. We now define the

single site Greens function

Gi = G0 +G0t iGi. (C.16)
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Rewriting eq. C.14 using the above expression gives

G = G0 +∑
i

(Gi −g0)+∑
i

∑
j 6=i

G0t iG0t jG0 + · · · (C.17)

The single site Greens function can expanded in terms of the single site wavefunctions

Gi = ∑
L

Ψi
L(r<)H i

L(r>), (C.18)

where the functions
{

Ψi
L(r)

}

({HL(r)}) are regular (irregular) at the origin of the ith cell and are

defined by,

H i
L(r) → hL(r),r > ri

max (C.19)

and,

Ψi
L(r) = jL(ri)+

Z

d3r′d3r′′G0(r,r′)t i(r′,r′′) jL(r′′

i ) (C.20)

where ri
max is the range of the ith potential. We also define the “scattering wavefunction”

Φi
L(r) = Ψi

L(r)− jL(ri)

=
Z

d3r′d3r′′G0(r,r′)t i(r′,r′′) jL(r′′

i ). (C.21)

Using the above definition and the fact that

G0(r,r′) = ∑
L

jL(r<)h̄L(r>) (C.22)

we find the following expression for the total Greens function.

G(r,r′) = G0(r,r′)+∑
i

∑
L

Φi
L(r<)H̄ i

L(r>)

+ ∑
i, j

∑
LL′

Φi
L(r)Ḡ0

i j LL′Φ̄ j
L(r′)+ · · · (C.23)

where Ḡ0
i j LL′ is defined by the two site expansion of the free Greens function

G0(r,r′) = ∑
i

∑
L

jL(r<) jL(r>)θi(r)θi(r
′)

+ ∑
i j

∑
LL′

jL(r)G0
i j LL′ j̄L′(r′)θi(r)θ j(r

′) (C.24)

with the bar in eq. C.23 signifying that site diagonal elements are zero. This expression gives the

total Greens function in terms of the exponentially decaying “scattering wavefunctions”. One might
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be concerned with the lone G0 in the above expansion, especially if both spacial arguments are

constrained to a single site, i.e. within the range of one single site potential, as is the case when

calculating deep core x-ray absorption. In this case an equivalent expression for the total Greens

function is

G(r,r′) = Gc(r,r′)+ ∑
i6=c

∑
L

Φi
L(r<)H̄ i

L(r>)y

+ ∑
i, j

∑
LL′

Φi
L(r)Ḡ0

i j LL′Φ̄ j
L(r′)+ · · · (C.25)

which is given in terms of the central cell Green’s function instead of the bare Green’s function.



104

Appendix D

NEW AND MODIFIED PROGRAMS

Below is a list of new or modified codes along with an explanation of each.

D.1 BFEFFIT

This program is an implementation of the Bayes-Turchin algorithm. It is an extension of the FEFFIT

EXAFS analysis program which allows both EXAFS and XANES analysis. The FEFF program is

used for calculations of the XANES spectra as well as some of the parameters found in the EXAFS

equation. Below, we describe the required and optional input and output files, and give a few

examples.

D.1.1 Input to BFEFFIT program

There are several input files for this program. Some are required and some are optional. The

following is a list of input files and the information that they contain.

Required files for BFEFFIT Program:

• feffit.inp:

This is the main input file for the BFEFFIT program. The fitting variables are defined in

this file, and initial guesses and uncertainties are specified. In addition, details about how

to calculate the XANES and EXAFS are specified in this file. For information on the basic

formatting of the input file, and most of the input keywords, the feffit manual can be found at

http://cars9.uchicago.edu/ newville/feffit/feffit.ps

Below is a list of new and modified input keywords which can be used with the BFEFFIT

program, followed by a list of new parameters specific to XANES fitting.

New keywords for feffit.inp:
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– data [spect] data file

The data keyword has been modified to take an optional string input parameter spect. If

spect=XANES, the data file will be interpreted as XANES data and XANES fitting will

be performed.

– fffinp input file

Specify the feff input file to use for XANES fits.

– fffcmd command

Specify the command to use when calling FEFF.

– fllrng

When this keyword is present fit both EXAFS and XANES.

– noalign eshift

Turn off automatic initial alignment of edges for XANES fitting. Use an initial shift

eshift of the experimental data. This is useful for cases when the automatic alignment

algorithm fails.

– datacols ix iy

Specify the columns of the FEFF output file xmu.dat to use for the independent (ix) and

dependent (iy) variables.

– bkg n knots

Specify that a background spline with n knots spline knots should be used to correct the

calculated atomic background.

– bkgpos pos

Specify the grid on which the spline knots are placed. Here pos can be “exp” (exponen-

tially growing steps) or “k” (even steps in k-space). If this card is not present, the spline

knots are spaced evenly in energy across the fit range.

– bkgfcn fcn

Add an arbitrary user defined additive background function fcn. The independent vari-

able is called bkgx. A variety of functions may be used such as SIN, COS, THETA, etc.

and parameters used in the function may be varied during the fit. Example: Add a linear

function.
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bkgfcn a*bkgx + b

guess a 1.0 0.1

guess b 0.0 1.0

– errmin/errmax

Specify the minimum/maximum of the energy range used to calculate the experimental

errors.

– gausserr e0 gam amp

Add Gaussian shaped errors to the experimental error, i.e.

σ2
i = σ2

exp +amp∗ exp
[

(ei − e0)2/gam2] (D.1)

– zmat zmat file

Specify that the structure will be specified in z-matrix format using the file zmat file.

– guess value uncertainty

This keyword is used to specify the initial variable values and uncertainties.

New parameters for BFEFFIT Program:

– rdistNNN rmult

Multiply Cartesian coordinates of the NNNth atom specified in the FEFF input file by

rdistNNN.

– xdistNNN/ydistNNN/zdistNNN dist

Add dist to the Cartesian coordinate of the NNNth atom specified in the FEFF input file.

– spcavg amp

When averaging various spectra, this is the weight given to a particular feff calculation.

– vr re shift

Shift of the Fermi energy used for calculating XANES.

– vi im shift

Add a constant imaginary part to the energy. This is equivalent to adding Lorentzian

broadening with half width specified by im shift.
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– scale scl

Sets normalization of µ(E).

• feff.inp:

When XANES fitting is performed, an input file for FEFF must included. The name of the

feff input file is specified in the feffit.inp file. For details on feff input files, see the FEFF

documentation

(http://leonardo.phys.washington.edu/feff/Docs/Docs.html)

or the FEFF wiki

(http://leonardo.phys.washington.edu/feff/wiki).

• feffNNNN.dat:

For EXAFS fitting, the feffNNNN.dat (NNNN stands for the path number) files must be

included by specifying each path file in the feffit.inp file. The feffNNNN.dat files are output

of the FEFF program and contain the information required for calculating EXAFS from the

EXAFS equation. For more information on these files, see the FEFF documentation

(http://leonardo.phys.washington.edu/feff/Docs/Docs.html)

or the FEFF wiki

(http://leonardo.phys.washington.edu/feff/wiki).

Optional input files for BFEFFIT program:

• zmatrix:

When the structure is specified using the zmatrix format, the user must provide a zmatrix

input file. Generally, each line in the input file specifies, in the following order:

1) An atomic element

2) an atom from a previous line which is the connecting atom

3) A bond length (distance between the atom and it’s connecting atom)

4) Another atom from a previous line

5) The angle defined by the three atoms specified so far
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6) A third atom from a previous line

7) The dihedral angle, i.e. the angle between the two planes defined by the first three atoms

and the last three atoms specified on the line

The first three lines are special lines which contain only some of the above information, for

example, the first line gives only the chemical element, while the second line has an element,

connected to the element of the first line, and finally a bond length. Within the BFEFFIT

code, the elements must also have the line number appended to them, i.e. Ge1, Cl2, etc.

Finally, variables may be used instead of static values to specify distances and angles. The

“Variables:” keyword specifies the end of the structural definition and the beginning of the

variable definition section of the z-matrix file.

D.1.2 Output of BFEFFIT program

• feffit.log:

This file contains information about the fit quality and the final values and correlations of the

parameters. When EXAFS fits are performed, this file also contains information about the

included paths, and other details of the fit, such as k and R ranges.

• feffit.prm

This is a condensed version of feffit.log which contains only the information about the fit

quality and the final parameter values.

• BestFit.dat

When XANES fitting is performed, this file contains the XANES spectrum calculated using

the final values of the fit parameters. It also contains the experimental XANES spectrum,

the spline corrected atomic background function, and any other user specified background

function.

D.1.3 Example input files for BIFEFFIT

Example 1: EXAFS fitting input (feffit.inp) for pyrococcus furiosus rubredoxin
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* comments begin with *

* Specify the data file

data ../../athena/exp.oxi.shifted_screen.chi

* Specify the k-range, the r-range, and the window sills

kmin 4.0 kmax 14.5 rmin 1.0 rmax 2.4 dk 0.1 dr 0.1

* Specify a k-weight kweight 1

* Specify the experimental errors (in k-space) epsk

0.000622458

* guess and set some parameters guess sig_1 3.17E-3

0.00118815 set sig_2 sig_1 guess eShift 0.0 7.921 guess amp

2.0 0.7921 guess vi 1.43 1.98025

* Include first path defining path 1 =

../../S02+SCREEN/feff0001.dat e0 1 = eShift delr 1 =

delr1*(1-alpha) - reff sigma2 1 = sig_1 s02 1 = amp ei 1 =

vi guess delr1 2.2718 0.00594075 * End Path 1

* Include second path path 2 = ../../S02+SCREEN/feff0002.dat

e0 2 = eShift delr 2 = delr1*(1+alpha) - reff sigma2 2 =

sig_2 s02 2 = amp ei 2 = vi guess alpha 0.0 0.39605 * End

Path 2

Example 2: XANES fitting input for GeCl4

comment * * Specify the data file, and that it is XANES

data. data XANES GeCl4.dat
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* Specify the command to use for calculating the XANES

spectrum. fffcmd feff84

* Specify the experimental error eps 0.01

* Specify a theoretical error with Gaussian shape. gausserr

11124 15 10

* Specify the number of spline parameters and the method of

distribution. bkg 4 bkgpos k

* Specify the fit range. emin 0 emax 11151

* Specify a user defined additive background function.

bkgfcn a*bkgx + b guess a 0.0001 guess b 0.00001

* Specify the feff input file. fffinp xns.inp

* Specify that a z-matrix input file will be used to define

* the structure zmat GeCl4.gzmat

* Specify an overall scaling parameter in terms of the *

variable scl. scale scl * Specify the initial guess and

uncertainty of scl. guess scl 1.0 0.5

* Specify an overall energy shift. e0 deltae1 guess deltae1

0.0 1.0

end
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Example 3: z-matrix input for GeCl4

Ge1

Cl2 Ge1 r1

Cl3 Ge1 r1 Cl1 a1

Cl4 Ge1 r1 Cl1 a2 Cl2 d1

Cl5 Ge1 r1 Cl1 a2 Cl3 d1

Variables:

r1 = 2.1 0.5

set a1= 105.47

set a2= 105.47

set d1= 115.00

D.2 Self Energy and Many Body Effects: FEFF90

This new version of FEFF (FEFF90) includes several new and modified subroutines for calculating

the quasi-particle self-energy and spectral function using the many-pole model. There are also new

input keywords and several new input and output files which are explained below.

D.2.1 New and modified subroutines

• XCPOT

This subroutine calculates the quasi-particle self-energy. In FEFF84, there were several op-

tions available which specified the model to use in calculations of the self-energy, including

the plasmon-pole model. In FEFF90, all of the previous options are still available, but the

many-pole mode may also be used.

• CSIGZ

This subroutine calculates the complex self-energy at a single energy point given the pole

positions, strengths and widths.

• SIGMA1

This subroutine calculates the dynamic part of the self-energy given a single pole position.
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• DSIGMA

This subroutine calculates the derivative of the self-energy with respect to energy, which is

used later to calculate the renormalization parameter Z.

In addition to the above, the routines outlined in the thesis by L. W. Campbell were modified to

include the many-pole model in calculations of the spectral function.

D.2.2 Input files for FEFF90

• feff.inp

The feff input file, named feff.inp is used to specify the structure, the spectrum to calculate,

and the approximations to make during the calculation. Most of the keywords or “cards” for

available for FEFF input files are the same for FEFF90 as for FEFF84 and details can be found

in the documentation http://leonardo.phys.washington.edu/feff/Docs/Docs.html

or the FEFF wiki

http://leonardo.phys.washington.edu/feff/wiki

Below are listed several new keywords that were added for calculating inelastic losses.

– PLASMON iPl

With iPl = 4, calculate the XANES spectrum using the many pole model.

– SO2CONV

Calculate the spectral function and convolve the final spectrum.

– SFSE k

When SO2CONV keyword is used, print out the off shell self-energy and the spectral

function at the given k.

• exc.dat

This file is input for the many-pole or broadened-pole self-energy. It contains the pole posi-

tions, strengths, and widths. This file can be created using the program EPS2EXC which is

explained below.
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D.2.3 Output files of the FEFF90 program

Most of the output files for FEFF90 are the same as for FEFF8.4, and information about these can

be found in the documentation http://leonardo.phys.washington.edu/feff/Docs/Docs.html

or the FEFF wiki

http://leonardo.phys.washington.edu/feff/wiki

Below are listed several new output files related to calculations of inelastic losses.

• mpse.dat

This output file contains the real and imaginary parts of the quasi-particle self-energy Σ(E)

and renormalization factor Z(E) as a function of energy in eV. The file also contains the

EXAFS inelastic mean free path, which is related to the imaginary part of the self-energy.

• satsf.dat

This file contains the intrinsic, extrinsic, and interference parts of the satelite spectral function,

as well as the total satelite spectral function as a function of energy in eV for a given photo-

electron momentum. This file will only be printed if the SFSE keyword (described above) is

used in the feff.inp file.

• qpse.dat

This file contains the total spectral function, including the main quasi-particle peak as well as

the satelite structure as a function of energy for a given photo-electron momentum. This file

will only be printed if the SFSE keyword (described above) is used in the feff.inp file.

D.3 EPS2EXC

This program calculates the pole positions, strengths, and widths needed for the many-pole self-

energy calculations following the prescription given in Chapter 4 Section 4.2.2. The file loss.dat

which contains the loss function is required as input. The output is written to the file exc.dat. Input

for this program is specified by the user at run-time. The input parameters are:

1) The number of poles used to represent the loss function
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2) The expected f-sum rule, and that given by the opcons program. If these are unknown or other

methods were used to obtain the loss function, these can both be set to 1.0

3) The dielectric constant of the material. If this is unknown, set this to -2. If the material is a

metal, set this to -1 and an infinite dielectric constant will be assumed.

D.4 NBSECONV

This program applies the many-pole self-energy to calculations of the optical constants within the

AI2NBSE[79] application[79] by convolving the spectrum with an energy dependent Lorenzian

function. This part of the calculation runs after the rest of the calculation and all standard out-

put files are appended with SE, i.e. eps1 SE, eps2 SE, loss SE, etc. indicating that self-energy

has been applied to these results. For documentation on the AI2NBSE input and output, see

http://leonardo.phys.washington.edu/ai2nbse/ai2nbsedoc.pdf. In addition, several new keywords,

listed below, were added to the ai2nbse input.

• NBSE.SE RS rs

Specify the Wigner Seitz radius to be used in the calculation of the self energy.

• NBSE.SE METAL iMetal

Specify that the material is a metal. If iMetal is 0, material is not a metal, if iMetal is 1,

assume dielectric constant is infinite as for a metal.

• NBSE.SE NITER N

Specifies the number of iterations to use when calculating the final spectrum. The loss func-

tion is used to calculate the self-energy, which is then used in a calculation of all the optical

constants including the loss function. This is repeated N times.

D.5 FEFF-FP

This is the full potential version of FEFF, which has been modified to accept potentials and densities

from the ORCA electronic structure code. Several of the routines in the full potential version of

FEFF have been modified and new routines have been added. In addition to the FEFF-FP program
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there are several other scripts and programs which facilitate the interface with ORCA. We will not

give details about the use of the ORCA program, but the ORCA executables and documentation can

be found at http://www.thch.uni-bonn.de/tc/orca/.

D.5.1 New and modified subroutines

• POT

This subroutine creates the cell potentials. The output is stored in pot.bin in packed ASCII

format. This routine has been modified to skip the normal calculation of the potentials. In-

stead, a total potential is read from a file, cell potentials are formed, and finally those cell

potentials are expanded in a spherical harmonic basis. In addition, functionality has been

added to allow for empty cell potentials, i.e. cells that do not contain a nucleus.

• VORONOI

This is a new subroutine that finds the Voronoi cells.

• RK4DIR

This is a new subroutine that solves the coupled radial Dirac equation on an arbitrary grid

using the fourth order Runge-Kutte algorithm.

D.5.2 Input for the FEFF-FP program

Here we describe the main input files required for the FEFF-FP program.

• feff.inp

The input file for the FEFF-FP program is very similar to that of FEFF84. The file is called

feff.inp, and documentation can be found at

http://leonardo.phys.washington.edu/feff/Docs/Docs.html

or

http://leonardo.phys.washington.edu/feff/wiki.

The only modified keyword is the POTENTIALS keyword, which now accepts the value 0 for

the atomic number which signifies that an empty cell potential should be used. For example,
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the following lines specify that the absorbing atom is a copper atom, and the atoms with

potential index 1 are empty cells:

POTENTIALS

0 29 Cu -1 -1

1 0 EC -1 -1

• vtot3d.dat

This file contains the total potential on the FEFF logarithmic radial grid about each representa-

tive atom. This file can be obtained by first running the ORCA code to obtain the electrostatic

potentials and densities, then running the program ORCA2FEFF. This has all been automated

in the script FPCALC which is explained below.

D.5.3 Output of the FEFF-FP program

Most of the output files of FEFF-FP are the same as those of FEFF84 and details can be found the

FEFF84 documentation,

http://leonardo.phys.washington.edu/feff/Docs/Docs.html

or

http://leonardo.phys.washington.edu/feff/wiki.

Below we list the new output files of FEFF-FP.

1) ldos.dat

This file contains the angular momentum projected density of states (LDOS) for the central

atom, as well as the total DOS for each unique atom in the system as a function of energy.

2) vlm.dat

This file contains the coefficients of the angular momentum expansion of each cell potential

as a function of distance from the cell center.
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D.5.4 Auxiliary programs and scripts for the FEFF-FP program

• orca feffpot

This script runs the orca vpot program to generate the electrostatic potentials on the FEFF

radial grids. Required input files are named ptsNN.dat and contain the FEFF radial grids for

the NN th atom. The output files, v3dNN.dat contain the electrostatic potentials.

• Orca2Feff

This program reads the output of orca feffpot (v3dNN.dat) as well as the density file

rho3d tot.cube (obtained from ORCA) and creates the total Kohn-Sham potentials using the

local density approximation for the exchange-correlation potential.

• FPCalc

This script is the driver for full potential calculations using FEFF-FP and ORCA. The script

takes a feff input file (not named feff.inp) as a command line input. It writes an ORCA

input file for the material specified and runs ORCA to obtain the electrostatic potentials and

densities. It then runs Orca2Feff to generate the total LDA potential and finally runs FEFF-

FP to obtain the XANES spectrum. The below example shows a typical input file and a

screenshot of the runtime output.

Example: Full potential calculation of the Br2 molecule

[hebhop@bernini Br2-2]\$ cat Br2.inp

* K edge of Br2 molecule

* Run all modules

CONTROL 1 1 1 1 1 1

* Specify that no core hole will be used.

NOHOLE
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* Use full multiple scattering with a 5 angstrom cluster

FMS 5.0 1

EDGE K

S02 1.0

* pot xsph fms paths genfmt ff2chi

PRINT 1 0 0 0 0 0

* ixc [ Vr Vi ]

* Using ground state exchange

EXCHANGE 2 0.0 0 2

* kmax [ delta_k delta_e ]

XANES 5.0 0.02 0.01

RPATH 0.1

* Use ten empty cells along with the two Br cells

POTENTIALS

0 35 Br 2 5 1

1 35 Br 2 5 1

2 0 EC 2 5 1

3 0 EC 2 5 1

4 0 EC 2 5 1

5 0 EC 2 5 1

6 0 EC 2 5 1

7 0 EC 2 5 1

8 0 EC 2 5 1

9 0 EC 2 5 1
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10 0 EC 2 5 1

11 0 EC 2 5 1

ATOMS

0.00000 0.00000 0.00000 0 Br 0.00000 0

0.00000 0.00000 2.28100 1 Br 2.55266 1

0.00000 2.28100 0.00000 2 EC 2.55266 1

2.28100 0.00000 0.00000 3 EC 2.55266 1

-2.28100 0.00000 0.00000 4 EC 2.55266 1

0.00000 -2.28100 0.00000 5 EC 2.55266 1

0.00000 0.00000 -2.28100 6 EC 2.55266 1

0.00000 2.28100 2.28100 7 EC 2.55266 1

2.28100 0.00000 2.28100 8 EC 2.55266 1

-2.28100 0.00000 2.28100 9 EC 2.55266 1

0.00000 -2.28100 2.28100 10 EC 2.55266 1

0.00000 0.00000 4.56200 11 EC 2.55266 1

END

[hebhop@bernini Br2-2]\$ FPCalc Br2.inp

Central atom at:

0.00000 0.00000 0.00000

################################################################

Running feff to get points:

################################################################

Feff 9.00x2

NOHOLE:

Expert option, please read documentation carefully and check your results.

XANES:

Null title

Calculating potentials ...
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Enter lmax for potential:

free atom potential and density for atom type 0

free atom potential and density for atom type 1

initial state energy

.

.

.

################################################################

Running ORCA to get potentials:

################################################################

Br

Br

EC

EC

EC

EC

EC

EC

EC

EC

EC

EC

*****************

* O R C A *

*****************

--- An Ab Initio, DFT and Semiempirical electronic structure package ---

########################################################
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# -***- #

# -***- #

# Developed by Frank Neese #

# Lehrstuhl fuer Theoretische Chemie #

# Institut fuer Physikalische und Theoretische Chemie #

# Universitaet Bonn #

# Germany #

# theochem@thch.uni-bonn.de #

# #

# All rights reserved #

# -***- #

########################################################

.

.

.
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